精确定位碱基编辑平台的开发目的是通过使用 RNA 适体 (Collantes, 2021) 来有效招募碱基修饰酶。精确定位碱基编辑系统可有效诱导靶标特异性核苷酸变化,而不会形成 DNA 双链断裂或插入缺失。该系统由三个部分组成:[1] 核酸酶缺陷型“切口酶” nCas9,仅切割或“切口”单链 DNA,与尿嘧啶糖基化酶 (UGI) 抑制剂融合 (Komor, 2016),[2] 胞苷脱氨酶碱基编辑器 (大鼠 APOBEC) 与适体结合蛋白融合,以及 [3] 适体单向导 RNA (sgRNA),可将 nCas9 和适体-脱氨酶融合物招募到特定的 DNA 靶位点(图 1)。将这三种成分递送到哺乳动物细胞中可诱导高度特定水平的 CG 到 TA 碱基转化,适用于涉及单个氨基酸点突变或功能性基因敲除的细胞和基因治疗应用。
基因组编辑工具,如锌指核酸酶、转录激活因子样效应核酸酶、CRISPR-Cas 系统和 CRISPR-Cas 衍生物(胞嘧啶和腺苷碱基编辑器),已广泛应用于基因组操作,并显示出它们的治疗潜力。除了基因组编辑技术之外,RNA 碱基编辑技术也得到了开发 1 。由于 RNA 编辑是可逆的、可调控的,并且不会导致基因组的永久性改变,因此它在治疗应用中可能具有一定的优势。对于腺苷的 RNA 编辑,作用于 RNA 的腺苷脱氨酶 (ADAR) 家族的成员,如 ADAR1(异构体 p110 和 p150)和 ADAR2(参考文献 2、3),已被设计用于将腺苷 (A) 精确转化为肌苷 (I) 1 。 ADAR1/2 的催化底物是双链 RNA,ADAR1/2 的脱氨酶结构域负责 A 到 I 的 RNA 编辑 4、5。肌苷被识别为鸟苷 (G),并在随后的细胞翻译过程中与胞苷 (C) 配对 3。为了实现靶向 RNA 编辑,ADAR 蛋白(或其脱氨酶结构域 ADAR DD)已与多种 RNA 靶向模块融合,例如 λ N 肽 6 – 8、SNAP 标签 9 – 13 和 Cas13 蛋白 14。此外,可以利用带有 R/G 基序的工程向导 RNA 与异位表达的 ADAR1 或 ADAR2 蛋白偶联来实现靶向 RNA 编辑 15 – 18。然而,外源编辑酶的异位表达与几个问题有关,包括基因组和/或 RNA 转录物的大量全局脱靶编辑 19 – 23 、免疫原性 24 – 27 、致癌性 28 – 30 和递送障碍 24 。 Stafforst 团队和我们自己报告的两种 RNA 编辑技术 RESTORE 31 和 LEAPER 32 利用内源性 ADAR 对 RNA 进行可编程编辑,而无需引入
金黄色葡萄球菌中的染色体突变和靶基因缺失和失活通常使用等位基因交换方法产生。然而,近年来,已经开发出更快速的方法,通常使用基于 CRISPR - Cas9 的系统。在这里,我们描述了最近开发的用于金黄色葡萄球菌的基于 CRISPR - Cas9 的质粒系统,并讨论了它们在靶基因突变和失活中的用途。首先,我们描述如何将 CRISPR - Cas9 反选择策略与重组工程策略相结合以在金黄色葡萄球菌中产生基因缺失。然后我们引入死 Cas9 (dCas9) 和 Cas9 切口酶 (nCas9) 酶,并讨论如何使用与不同核苷脱氨酶融合的 nCas9 酶在靶基因中引入特定的碱基变化。然后,我们讨论如何通过引入提前终止密码子或突变起始密码子,使用 nCas9-脱氨酶融合酶来实现靶向基因失活。这些工具共同凸显了基于 CRISPR - Cas9 的方法在金黄色葡萄球菌基因组编辑中的强大功能和潜力。
定点 RNA 碱基编辑能够实现遗传信息的瞬时和可控改变,代表了一种操纵细胞过程的最新策略,为新型治疗方式铺平了道路。虽然已经对引入腺苷到肌苷变化的工具进行了深入研究,但对胞苷到尿苷编辑的精确和可编程工具的工程设计却有些落后。在这里,我们证明,从 RESCUE-S 工具中获取的 ADAR2 腺苷脱氨酶进化而来的胞苷脱氨酶结构域在将 RNA 靶向机制从基于 Cas13 更改为基于 SNAP 标签时提供了非常高效且高度可编程的编辑。向导 RNA 化学的优化进一步允许在难以编辑的 5'-CCN 序列环境中显着提高编辑产量,从而提高了该工具的底物范围。关于编辑效率,SNAP-CDAR-S 在所有测试目标上都明显胜过 RESCUE-S 工具,并且在扰乱 β-catenin 通路方面也非常出色。 NGS 分析表明,这两种工具都存在类似、适度的全局脱靶 A 到 I 和 C 到 U 编辑。
胞嘧啶碱基编辑器 (CBE) 可实现可编程的基因组 C·G 到 T·A 转换突变,通常包含经过修饰的 CRISPR-Cas 酶、天然存在的胞嘧啶脱氨酶和尿嘧啶修复抑制剂。先前的研究表明,利用天然存在的胞嘧啶脱氨酶的 CBE 可能导致无引导的全基因组胞嘧啶脱氨。尽管随后报道了可减少随机全基因组脱靶的改进型 CBE,但这些编辑器的靶向性能可能不理想。本文,我们报告了使用 TadA 的工程变体 (CBE-T) 的 CBE 的生成和表征,这些变体可在序列多样的基因组位点上实现高靶向 C·G 到 T·A,在原代细胞中表现出强大的活性,并且不会导致全基因组突变的可检测升高。此外,我们报道了胞嘧啶和腺嘌呤碱基编辑器 (CABE),它们可催化 A 到 I 和 C 到 U 编辑 (CABE-T)。与 ABE 一起,CBE-T 和 CABE-T 可使用实验室进化的 TadA 变体对所有转换突变进行可编程安装,与之前报道的 CBE 相比,这些变体具有更好的特性。
估计全世界约有15%是由病毒引起的[1]。这些致癌病毒被归类为RNA(RTV)或DNA肿瘤病毒(DTVS)[1]。There are two human RTVs: hepatitis C virus (HCV) and human T-cell lymphotropic virus-1 (HTLV-1), and five human DTVs: human papilloma virus (HPV), hepatitis B virus (HBV), Epstein–Barr virus (EBV), Kaposi sarcoma-associated herpesvirus (KSHV), and默克尔细胞多瘤病毒(MCPYV)[1]。这些肿瘤病毒(TVS)建立了终身感染并使用多种策略逃避宿主免疫。并非所有电视感染都会引起疾病,既定潜伏期的病毒模式和持久性均干扰正常的细胞过程,有时会导致癌症[1]。特别有趣的是逃避尿嘧啶介导的抗病毒药物的机制,这可能对宿主基因组有害。尿嘧啶是一种非规范的DNA碱基,可以在补充过程中将其掺入DNA或通过单链DNA中的细胞氨酸而化学引入DNA,从而导致诱变u:g不匹配[2]。这些不匹配可以通过激活诱导的胞嘧啶脱氨酶(AID)/载脂蛋白B mRNA编辑催化性多肽蛋白(APOBEC)(APOBEC)来实现通过激活诱导的胞嘧啶脱氨酶(AID)/载脂蛋白B mRNA BRNA BRNA(APOBEC)[3]。AID和APOBEC3(A3)蛋白质的亚科分别在适应性和先天免疫反应中起作用。AID是B细胞成熟蛋白[4,5],该蛋白在B淋巴细胞中表达,进入淋巴结中的生发中心。曾经成熟的B细胞退出生发中心,辅助表达返回到无法检测的水平。辅助活性仅限于表达免疫球蛋白基因的转录气泡,以使抗体库多样化。干扰素信号传导和促炎性细胞因子上调A3蛋白[3]。人类具有7种A3蛋白(A3a,A3b,A3C,A3D/E,A3F,A3G和A3H),可以靶向RNA,逆转录病毒新生cDNA或复制叉中的单链DNA [3]。AID/A3蛋白成功限制了RNA和DNA病毒[3],包括一些RTV和DTV [3,6]。但是,RTV的A3限制已被确定为脱氨酶独立于脱氨酶[6,7],即不是尿嘧啶介导的抗病毒免疫。因此,将不会更详细地讨论RTV。AID/A3尿嘧啶介导的抗病毒免疫通常被表示为“双刃剑”,因为这些有效的病毒限制子可能无法区分宿主和病毒基因组。因此,AID/A3蛋白在DTV发病机理中的作用引起了很大的关注。在这里,我们回顾了当前对DTV逃避尿嘧啶介导的抗病毒免疫的机制的知识。
花生 ( Arachis hypogaea L.) 是豆科植物的异源四倍体,能够在热带和亚热带地区生长茂盛,被认为是一种很有前途的全球油籽作物。提高油酸含量已成为花生育种的主要目标之一,因为它具有降低血液胆固醇水平等健康益处、抗氧化特性以及延长保质期等工业效益。花生基因组测序已证明存在编码脂肪酸去饱和酶 2 ( FAD2 ) 的同源基因 AhFAD2A 和 AhFAD2B,它们负责催化单不饱和油酸转化为多不饱和亚油酸。研究表明,导致 FAD2 基因移码或终止密码子的突变会导致油中油酸含量升高。在本研究中,使用与不同脱氨酶融合的 Cas9 构建了两个表达载体 pDW3873 和 pDW3876,并测试了它们作为诱导花生 AhFAD2 基因启动子和编码序列点突变的工具。两种构建体都含有单核酸酶无效变体 nCas9 D10A,PmCDA1 胞嘧啶脱氨酶与该变体融合到 C 端(pDW3873),而 rAPOBEC1 脱氨酶和尿嘧啶糖基化酶抑制剂 (UGI) 分别融合到 N 端和 C 端(pDW3876)。将三个 gRNA 独立克隆到两个构建体中,并在 AhFAD2 基因的三个靶位点测试其功能和效率。两种构建体都显示出碱基编辑活性,其中在靶向编辑窗口中胞嘧啶被胸腺嘧啶或其他碱基取代。 pDW3873 的效率高于 pDW3876,表明前者是花生中更好的碱基编辑器。这是一个重要的进步,因为将现有突变基因渗入优良品种可能需要长达 15 年的时间,这使得该工具对花生育种者、农民、行业以及最终对消费者都大有裨益。
通过靶向的随机诱变(TRM)工具定向所需基因座的进化(DE)是一种强大的方法,用于产生具有新颖或改进功能的遗传变异,尤其是在复杂的基因组中。基于TRM的DE涉及开发目标DNA序列的突变库,并筛选所需特性的变体。然而,很长一段时间以来,DE方法仅限于细菌和酵母菌。最近,基于CRISPR/CAS和DNA脱氨酶的工具可以避开持久的障碍,例如较长的寿命,小型图书馆大小和低突变率,以促进多细胞生物本机遗传环境的DE。不是很明显的,基于脱氨酶的基础编辑-TRM(BE-TRM)工具通过实现基础取代和对目标DNA序列的随机化来大大扩展了DE方案的范围和效率。BE-TRM工具为所需蛋白质的连续分子演化,代谢途径工程,创建所需基因座的突变库以发展新功能以及其他应用,例如预测赋予抗生素耐药性的突变体。此重新查看提供了有关DE的BE-TRM工具的最新进展,其在生物学中的应用以及未来的方向以进行进一步改进的更新。[BMB报告2024; 57(1):30-39]
• 脱氨酶的定向进化 • PAM 变体碱基编辑器 • 定向进化 Cas9 以创建用于 BE 的非 NGG PAM 变体 • 密码子、NLS 和接头优化 • 环状置换体和镶嵌碱基编辑器 • DNA 脱靶评估 • RNA 脱靶评估 • 旁观者编辑最小化 • 引导 RNA 工程 • 离体和体内 BE 递送 • 最小化脱靶活性的工程 BE • HSC、肝细胞和 T 细胞的离体碱基编辑 • ABE 的低温电子显微镜结构 • 小鼠体内碱基编辑 • 非人类灵长类动物体内编辑
靶向核酸酶等高精度基因组编辑工具的发展加速了人类基础医学、动物科学、动物育种以及疾病诊断等领域的进步(Doudna and Charpentier,2014;Kurtz 等,2021;Rieblinger 等,2021;Xie 等,2021)。尤其是被称为 CRISPR 技术的基因组编辑系统自首次报道以来发展迅速(Jinek 等,2012),成为最热门的技术之一。CRISPR/Cas9 技术可精准识别靶序列并实现高效的 DNA 切割,从而完成全基因组范围的基因敲除/敲入(Cong 等,2013;Koike-Yusa 等,2014)。但由于编辑过程中会发生双链断裂(DSB),该技术往往会引入大量不理想的InDel(插入和缺失)突变(Zhao et al.,2019)。随后,人们开发了碱基编辑器(BE),可以利用胞嘧啶脱氨酶或腺苷脱氨酶实现单核苷酸的精准编辑,而不会诱导DSB(Gaudelli et al.,2017;Rees and Liu,2018)。近来,引物编辑器(PE)进一步扩展了基于CRISPR的编辑工具包,可实现所有12种可能的碱基转换和短DNA片段的插入和缺失。该技术融合逆转录酶和Cas9蛋白,以引物编辑向导RNA(pegRNA)为修复模板,实现精准的基因编辑(Anzalone et al.,2019)。在这篇小型评论中,我们总结并讨论了 CRISPR 技术在猪中的最新应用。