描述:重组人全长ADAR1(腺苷脱氨酶,RNA特异性1)转录本1,包含氨基酸2-1226(END)。该蛋白质包含感兴趣的突变E1008Q。此构造包含一个N末端标记标签。重组蛋白具有亲和力纯化。背景:ADAR1(腺苷脱氨酶,RNA特异性1)对RNA中的腺苷进行腺苷进行腺苷,尤其是针对位于特定茎环基序结构中的腺苷。有人提出,ADAR进化为为转录组提供额外的多样性,而大多数ADAR编辑事件发生在非编码RNA中,但其中一些(包括规范GLUA2编辑位点)改变了编码蛋白的氨基酸序列。adar1通过缓解干扰素信号传导在先天免疫中起作用。ADAR1功能障碍会导致自身免疫性疾病,并影响癌细胞的生长和增殖以及对免疫疗法的肿瘤反应。由于ADAR识别双链RNA,因此抑制或修饰RNA病毒的功能也起作用。因此,它与病毒进化和病毒变体(例如SARS-COV-2变体)的出现有关。已经提出了ADAR1的E1008Q突变体比其野生型具有更高的编辑活性,其突变存在于蛋白质的脱氨酶结构域中的高度保守的谷氨酸盐中。物种:人类结构:ADAR1(E1008Q)(FLAG-2-1226(END))浓度:0.39 mg/ml表达系统:HEK293纯度:80%格式:水缓冲液溶液。MW:137 KDA GenBank登录:NM_001111稳定性:-80°C至少6个月。以:50 mM Tris-HCl,pH 8.0、750 mm NaCl,0.01%Triton X-100、10%甘油和100μg/ml的FLAG肽。存储:-80°C使用的说明:在冰上解冻,并在使用前轻轻混合。不要涡旋。在打开前进行快速旋转。等分的小容量,然后闪烁冻结以进行长期存储。避免多个冻结/解冻周期。测定条件:根据ADAR1:RNA TR-FRET分析套件(#82252)进行测定,具有不同量的ADAR1(E1008Q),FLAG-TAG重组(#102535)。应用程序:
载脂蛋白B mRNA编辑催化多肽(APOBEC)家族指定多种胞苷脱氨酶。在哺乳动物中,至少5个基因编码Apobecs 1,2,3,4,而激活诱导的胞苷脱氨酶(AID)[1,2]。A1酶是第一个被重新认可的酶,并且在特定宿主mRNA的组织特异性编辑中起着至关重要的作用[3],但是尚未确定在病毒基因的诱变中的确认作用。人类已经扩增了APOBEC3(A3)基因座,以产生7个成员:A3A,A3B,A3C,A3D,A3D,A3F,A3G,A3G和A3H。所有APOBEC蛋白似乎与单链RNA或DNA或两者都结合[1,2]。apo-bec酶在细胞学上脱氨酸单链核酸,导致C-TO-U突变。当这些突变发生在重复病毒的减去链上时,结果是病毒和链的g- to-a转变。由于这些过渡通常会导致胡说八道或误导性突变,因此基本病毒基因产物的合成被阻断,传染性颗粒产量下降[1,2]。在反应中,病毒产生多种基因,干扰A3蛋白的功能。通常,这些是蛋白质拮抗剂,包括HIV-1 VIF的众所周知的例子,它充当了E3连接酶诱导某些A3脱氨酸酶的蛋白酶体降解的适配器[4-7]。此示例提供了明确的证据,表明A3基因的功能是干扰病毒复制。A3s在淋巴样和髓样细胞中似乎以较高的量表示[8-10],这表明这些酶是病毒入侵的前线防御者。然而,其他细胞类型(例如乳腺细胞)也表达A3 [11]。由于某些A3被包装到病毒颗粒中,因此,A3S的病毒体掺入为摄入牛奶传播病毒的新生儿提供了额外的概念。尽管逆转录病毒DNA的脱氨基可能是病毒抑制的主要机制,但已经观察到了脱氨基依赖性的APOBEC活性模式[12,13]。由于A3S与包装到病毒体中的单链RNA结合,因此这些脱氨酶为病毒DNA合成提供了路障[13-15]。A3G还与HIV-1反向转纹酶(RT)相互作用,以干扰DNA复制[16]。不同的APOBEC可能已经演变为允许与RT以外的逆转录病毒酶结合。A3酶也已显示可分别抑制含DNA和RNA的病毒,例如人乳头状瘤病毒和冠状病毒[13-15]。APOBEC与其他病毒聚合酶的结合将为阻断各种病毒的复制提供充足的机会。
概述此文档解决了酶替代疗法用于腺苷脱氨酶缺乏症的使用。这种遗传性疾病导致缺乏功能性腺苷脱氨酶(ADA),这是一种负责腺苷底物代谢的酶。这些底物的浓度增加会导致各种器官系统的不利影响,最著名的是免疫系统。ADA缺乏通常会导致严重的合并免疫缺陷(SCID),其在生命的头几个月中呈现T-,B-和自然杀手(NK)细胞功能障碍。可以通过新生儿筛查,基因检测或对实验室结果的评估进行诊断。标志性实验室发现包括裂解性红细胞或干血点中没有ADA活性,以及红细胞中脱氧腺苷三磷酸(DATP)水平的明显增加(也被测量为DAXP)。ADA缺乏还会导致红细胞的ATP浓度显着降低,缺乏或极低水平的红细胞中的s-腺苷 - 腺苷半胱氨酸水解酶,腺苷和2'-脱氧腺苷的增加,尿液,血浆和干燥的血液斑点。对ADA-SCID的治疗涉及酶替代疗法(ERT)和造血干细胞移植(HSCT)或在基因治疗研究中的招募。ADA-SCID的基因疗法在美国仍在研究中。hsct是最广泛可用的选择的确定治疗方法。最成功的移植物发生在匹配的兄弟姐妹和匹配的家庭捐助者(MSD/MFD)中。根据基于共识的准则(Grunebaum 2023),所有患者均应接受ERT(即Revcovi)诊断后,然后用MSD/MFD HSCT(或可能是基因治疗)进行明确治疗。如果临床稳定,则有些患者可能会立即进行MSD/MFD HSCT,如果可诊断。否则,在大多数患者进行HSCT之前,可以将ERT用作相对较短的(长达几年)的“桥梁”(如果有)。如果确定治疗没有可用或失败,则可以继续或重新生效ERT。adagen(Pegademase牛)是FDA批准的第一个ERT,不再是商业上可用的。它是源自牛组织的,对可靠和一致的生产提出了挑战。Revcovi(Elapegademase-LVLR)是基于牛氨基酸序列的重组腺苷脱氨酶。Revcovi成功替代了不足的ADA,以提供一致稳定的ADA活动。由于肌肉内给药,因此不应在严重的血小板减少症患者中使用。密切的临床监测对于所有接受ERT的患者都很重要,尤其是在长期持续的情况下。由于潜在的疾病机制,依从性差和/或对药物中和抗体的发展,可能会继续使用免疫力。
腺苷(a)至inosine(i)RNA编辑有助于转录本多样性,并以动态的细胞类型(特定方式)调节基因表达。在哺乳动物脑发育过程中,特定腺苷的编辑增加,而A-to-i编辑酶的表现保持不变,这表明存在介导RNA编辑时空调节的分子机制。在此,通过使用生化和基因组方法的组合,我们发现了一种分子机制,该机制以神经和发育特异性的方式调节RNA编辑。比较开发过程中的编辑,从而确定了仅在一个生命阶段编辑的神经转录本。特定于阶段的EDIT在神经发育过程中很大程度上受差异基因表达的调节。正确表达了近三分之一的神经发育调节基因取决于秀丽隐杆线虫中的唯一的A到I编辑酶ADR-2。但是,我们还确定了整个开发过程编辑和表达的神经转录本的子集。尽管在发育过程中ADR-2的神经特异性下调,但这些位点的大多数显示出成年神经细胞中的编辑增加。生化数据表明,作用于RNA(ADAR)家族的腺苷脱氨酶的脱氨酶缺陷成员ADR-1正在与ADR-2竞争,以在开发早期与特定转录本结合。我们的数据提出了一个模型,其中在神经发育过程中,ADR-2水平克服ADR-1抑制,从而导致ADR-2结合增加和特定转录本的编辑。一起,我们的发现揭示了RNA编辑的组织和开发特异性调节,并确定了调节ADAR底物识别和编辑效率的分子机制。
小球形头足动物通过腺苷脱氨基表现出异常广泛的mRNA,但尚不清楚基本机制。由于作用于RNA(ADAR)酶的腺苷脱氨酶会催化这种形式的RNA编辑,因此头足类直系同源物的结构和功能可能会提供线索。最近的基因组测序项目提供了蓝图,以全面互补。我们实验室的先前结果表明,Squid表达了一个ADAR2同源物,具有两个名为SQADAR2A和SQADAR2B的剪接变体,并且这些消息经过广泛编辑。基于章鱼和鱿鱼基因组,转录组和cDNA克隆,我们发现在小卵形中表达了另外两个ADAR同源物。第一个与脊椎动物ADAR1直系同源。与其他ADAR1不同,它包含一个新型的N末端结构域,为641 AA,预测为无序,包含67个磷酸化基序,并且具有氨基酸组成,丝氨酸和碱性氨基酸的氨基酸组成异常高。编码sqadar1的mRNA本身是广泛编辑的。也存在于任何脊椎动物同工型的直系同源的sqadar/d-like酶。编码SQADAR/D类的消息未编辑。使用重组SQADAR的研究表明,仅在完美的双链dsRNA和鱿鱼钾通道mRNA底物上,只有SQADAR1和SQADAR2是活跃的腺苷脱氨酶。sqadar/d样对这些底物没有活性。对这些底物没有活性。总体而言,这些结果揭示了SQADARS中的一些独特特征,这些特征可能会导致头足类动物中观察到的高级RNA回收。
摘要 志贺氏菌是一种革兰氏阴性细菌,可侵入人体肠道上皮。由此引起的感染志贺氏菌病是最致命的细菌性腹泻病。有关决定志贺氏菌病理生理的基因(包括染色体和毒力质粒)的大部分信息都是通过经典反向遗传学获得的。然而,流行的诱变技术的技术限制使得单次反应中只能产生少量突变体,从而阻碍了大规模的志贺氏菌靶向诱变和随后的表型评估。我们采用了一种 CRISPR-Cas 依赖性方法,其中切口酶 Cas9 和胞苷脱氨酶融合在单向导 RNA(sgRNA)的引导下引入靶向 C ! T 转换,导致内部终止密码子和翻译过早终止。在使用 mCherry 荧光报告基因的原理验证实验中,我们能够在大肠杆菌和志贺氏菌中生成功能丧失突变体,效率高达 100%。使用改进的波动分析,我们确定在优化条件下,由 Cas9 脱氨酶融合引入的非靶向突变的频率与自发突变在同一范围内,这使我们的方法成为细菌诱变的安全选择。此外,我们对该方法进行了编程,以突变已充分表征的染色体和质粒携带的志贺氏菌基因,并发现突变体的表型与已报道的基因缺失突变体的表型相似,在表型水平上没有明显的极性效应。该方法可用于 96 孔板格式,以提高通量并在几天内生成一系列靶向功能丧失突变体。
Hicrome™通用差异介质是根据Pezzlo(1),Wilkie等人(2),Friedman等人(3),Murray等人(4),Soriano和Ponte(5)和Ponte(5)和Merlino等(6)进行的作品的修饰。Hicrome™通用差异培养基,以鉴定来自临床和非临床标本的微生物,其中该培养基具有更广泛的应用作为一般营养琼脂,用于隔离各种微生物。这种培养基有助于鉴定一些革兰氏阳性细菌和革兰氏阴性细菌,基于它们所表现出的不同菌落颜色。这些颜色是由于属或物种特异性酶与培养基中掺入的两个发色底物的反应而形成的。肠球菌,大肠杆菌和大肠菌群产生酶,这些酶特异性地切割了这些发色底物,从而具有特征性的独特菌落颜色。蛋白质是苯丙氨酸和色氨酸等氨基酸的来源,这些氨基酸有助于指示色氨酸脱氨酶活性,从而促进了蛋白质物种,摩根菌和普罗维伦西亚物种的鉴定。通过肠球菌拥有的β-葡萄糖苷酶裂解了一种成色的底物,从而形成了蓝色的绿色菌落。大肠杆菌具有酶ß-半乳糖苷酶,该酶特异性切割了其他发色底物,从而形成了紫色的菌落。大肠杆菌可以通过进行吲哚测试来区分和与其他类似的颜色菌落进行区分。大肠菌群裂解了形成蓝色至紫色菌落的两个成色基底物。由于色氨酸脱氨酶活性,Proteus,Morganella和Providencia物种的菌落显得棕色。肽和胰蛋白蛋白酶提供氮,碳质化合物,必需的生长营养素,还可以作为氨基酸的来源。
平台,它可以通过DNA结合CAS和DNA修饰脱氨酶组成的基础编辑器的模块化组件,该基础编辑器通过在序列靶向指导指南RNA(GRNA)中编码的适体相关的Deaminase组件组成。由于适体依赖于脱氨酶成分靶向DNA序列,PIN点平台唯一地允许多对单个Cas Nickase组件进行多用作用于同时多发性基础编辑和靶向的转基因敲入。编码由大鼠APOBEC1和SPCAS9 NICKASE组成的PIN点基本编辑器的mRNA瞬时传递与合成适性剂编码的GRNA结合使用,可实现耐用的靶蛋白敲除,并显着提高了细胞生存能力,编辑效率,以及与CRISPR-CasS9相比,基因组的编辑效率和基因组完整性均与CRISPR-CasS9相比。为了演示同种异体PSC工程的PIN点平台的实用性,我们使用自动化的克隆跟踪和拾取工作流进行了一系列基因型,生成了一组克隆性低下IPSC线。通过多重碱基编辑和同时进行靶向转基因整合的碱基编辑生成的低免疫原性IPSC系列保留了多能性,并在区别为治疗细胞产物时表现出预期的人白细胞抗原(HLA)表型。因此,PIN点平台代表了一种安全有效的解决方案,可以通过与下游自动化兼容的新型单步过程同时执行多个基因组工程操作,从而提供了极大地简化同种异体IPSC衍生细胞疗法的开发的机会。
CRISPR (clustered regularly interspaced short palindromic repeats) is a natural bacterial defense system against bacteriophage infection that has recently been harnessed for genome and tran- scriptome editing in a wide range of organisms based on the generation of double-strand DNA breaks (DSBs) and RNA cleavage (3, 24, 32, 47, 52, 58, 73, 76, 79, 91,127)。是根据工程II(CAS9)和VI型(CAS13)可编程核酸酶,DNA和RNA基础编辑,质量编辑以及CRISPR干扰/激活(CRISPRI/A)编辑(CRISPRI/A)编辑(CRISPRI/A)编辑,启用与基本疾病的校正和安装基本疾病的校正和安装,40个基本疾病的突变(30; 69–71、87、105、115、135),例如转录扰动(138)和表观遗传调节(94)。这些基于DNA的编辑器是通过没有DSB活性的死亡CAS9(DCAS9)或CAS9 Nickase(CAS9N)的融合而生成的,只有对胞嘧啶脱氨酶的活性(例如,APOBEC和C-TO-T编辑的APOBEC和辅助)或trans-FER RNA(TRNA)腺苷(TRNA)腺苷氨基氨基酶(例如,tada)(例如,tada)(37)(37)(37)(37)。RNA编辑系统是通过将DCAS13B/DCAS13D/DCAS13X融合而成的,没有RNA裂解活性与腺苷脱氨酶结构域(例如,ADAR2 DD用于A-TO-I编辑)或工程型胞质Deam-Inase Inase Insaine(例如,ADAR2DD)的87,C-TON 7,c-us-n.7,c.-ty 7,c c. 47,c. 47,c.-ty 7,c-ty 7,c-ty 7,c-us-c.-edy in 13,c-u-u--u-u-udy in 13,c-u-udy in 34,c-u-u--为了启用序列特异性基因组调节,DCAS蛋白还融合到多个基因调节效应子,例如逆转录酶(10),转录阻遏物和激活剂(40,101)和表观遗传性调节器(17,99)。