多种重要的化学合成过程都依赖于氢气,氢气的生产和使用通常由其与这些市场之一的联系所驱动。例如,氨是世界上产量最高的化学品之一,它主要依赖于氢气。氨主要用于农业肥料,被认为是过去一个世纪每单位土地农业产量翻番的主要原因 [4]。氢气的另一个主要用途是作为脱硫过程中石油精炼的催化剂。除了化学生产之外,氢气还用作钢铁生产中的还原剂,并且已被证明可以替代生铁生产中的冶金煤。它甚至用于食品的氢化反应中,以产生更耐储存的半固体脂肪。
图1:A)Porphyran重复部分的化学结构。硫酸化二糖 - 卟啉二糖 - 可以在D-半乳糖的位置呈现甲基,给出甲基化和未甲基化的卟啉成分。通过生物合成期间L-乳糖残基的脱硫/环化获得的琼脂糖单位是相应甲基化的。b)B。plebieus porphyran pul的组织。基于先前的转录组分析,将PUL分为三个段(PUL -PORA,-POR B和-PORC)。当在Porphyran存在下生长B. plebieus时,将BACPLE_01692到BACPLE_01699基因(称为Pul-Pora)被中度上调。这与基因的两个相邻簇:BACPLE_01668到BACPLE_01689(PUL-PORC)和BACPLE_01700到BACPLE_01706(PUL-PORB),它们被高度上调(比PUL-PORA多10倍)[16]。在(1)[16],(2)[17],[18]和(4)本研究中确定酶功能。
气候变化需要大规模部署碳捕获和存储(CCS)。最近的计划表明,到2030年,CCS的容量增加了八倍,但CCS扩展的可行性却是有争议的。使用CCS和其他政策驱动技术的历史增长,我们表明,如果计划在2023年至2025年之间两倍,并且其故障率降低了一半,则CCS到2030年可能会达到0.37 GTCO 2年-1,比大多数1.5°C较低,但比大多数2°C途径更高。保持轨道至2°C将要求在2030-2040 ccs加速至少与2000年代的风力发电一样快,并且在2040年之后,它的增长速度比1970年代至1980年代的核能快。只有10%的缓解途径符合这些可行性限制,几乎所有这些途径描绘了<600 GTCO 2 2100捕获和存储。通过假设CCS计划的失败和生长的速度不如烟气脱硫的速度大约是这一数量的两倍,从而放松约束。
气候变化需要大规模部署碳捕获和存储(CCS)。最近的计划表明,到2030年,CCS的容量增加了八倍,但CCS扩展的可行性却是有争议的。使用CCS和其他政策驱动技术的历史增长,我们表明,如果计划在2023年至2025年之间两倍,并且其故障率降低了一半,则CCS到2030年可能会达到0.37 GTCO 2年-1,比大多数1.5°C较低,但比大多数2°C途径更高。保持轨道至2°C将要求在2030-2040 ccs加速至少与2000年代的风力发电一样快,并且在2040年之后,它的增长速度比1970年代至1980年代的核能快。只有10%的缓解途径符合这些可行性限制,几乎所有这些途径描绘了<600 GTCO 2 2100捕获和存储。通过假设CCS计划的失败和生长的速度不如烟气脱硫的速度大约是这一数量的两倍,从而放松约束。
摘要 自然系统通过高效和宽带能量捕获来驱动光合作用的高能反应。过渡金属光催化剂同样将光转化为化学反应性,但受限于光操作并且需要蓝光至紫外激发。在光合作用中,光捕获和反应性都通过分离到不同的位点得到了优化。受这种模块化架构的启发,我们通过将光合集光蛋白 R-藻红蛋白 (RPE) 共价连接到过渡金属光催化剂三(2,2 0-联吡啶)钌(II) ([Ru(bpy) 3 ] 2+ ) 来合成生物混合光催化剂。光谱研究发现,吸收的光能有效地从 RPE 转移到 [Ru(bpy) 3 ] 2+ 。生物混合光催化剂的实用性通过增加硫醇-烯偶联反应和半胱氨酰脱硫反应的产率来证明,包括在红光波长下恢复反应性,其中[Ru(bpy) 3 ] 2+单独不吸收。
6. 零售分销 24 7. 通信与信息技术 25 8. 产能增加计划 27 9. 运营服务与升级 32 10. 环境管理与污染控制 34 11. 采矿项目 37 12. 防洪与水资源管理 38 13. 燃料管理 42 14. 合同与材料管理 44 15. 可再生能源 45 16. 烟气脱硫和脱硝项目的业务发展与进展 48 17. 土壤保护养鱼与环境部 49 18. 企业社会责任 52 19. 教育 58 20. 人力资源管理 59 21. 应对新冠疫情的举措、创新与经验 68 22. 警戒活动 72 23. 官方语言推广 75 24. 健康服务 77 25. RTI ACT 78 26. 公众申诉 79 27. 财务及会计 80 28. 2021-22 年度审计报告 92 29. 2021-22 年度会计报表 97
3R 减少、再利用和回收利用 A Annum ASGI-SA 南非加速共享增长倡议 BAU 一切照旧 BMU 德国环境、自然保护和核安全部 Cap Capita CCICED 中国环境与发展国际合作委员会 CCS 碳捕获与储存 CHP 热电联产 CO 2 二氧化碳 COD 化学需氧量 DE 国内开采 DEMEA 德国材料效率局 (Germany Materialeffizienzagentur) DI 脱钩指数 DMC 国内材料消耗 DMI 直接材料投入 ECLAC 联合国拉丁美洲和加勒比经济委员会 EFA 北莱茵-威斯特法伦州效率局 (Effizienzargentur) EIA 环境影响评估 EU-15 奥地利、比利时、丹麦、芬兰、法国、德国、希腊、爱尔兰、意大利、卢森堡、荷兰、葡萄牙、西班牙、瑞典和英国 EU-27 奥地利、比利时、保加利亚、塞浦路斯、捷克共和国、丹麦、爱沙尼亚、芬兰、法国、德国、希腊、匈牙利、爱尔兰、意大利、拉脱维亚、立陶宛、卢森堡、马耳他、荷兰、波兰、葡萄牙、罗马尼亚、斯洛伐克、斯洛文尼亚、西班牙、瑞典和英国 FGD 烟气脱硫
盖恩斯维尔地区公用事业公司(GRU)经营位于佛罗里达州盖恩斯维尔的Deerhaven Generating Station(设施)。该设施有能力从包括煤炭在内的各种来源发电。单元2在2021年初进行了改装,主要燃烧天然气。它具有根据需要发射煤炭的能力。从2024年1月至11月,煤炭构成约0.3%的单元输入。由于2021年改造后的操作变化,煤炭燃烧残差(CCR)法规的规定(40 CFR 257 B部分D)不适用于该设施产生的残差。过去生成的CCR并在此设施中进行了管理,包括底灰,粉煤灰和烟气脱硫副产品。CCR表面蓄水系统(SIS)在2024年3月通过就地CCR进行了关闭,这些池塘目前正在管理废物流(例如,冷却塔楼排污,Sluice水等)不受联邦CCR法规规定的规定。GRU于2024年5月向佛罗里达环境保护部提交了封闭认证报告。