本演示文稿在1995年的《私人证券诉讼改革法案》的含义中包含“前瞻性陈述”,其中涉及实质性的风险和不确定性,包括有关公司计划的监管性提交,未来临床临床试验的陈述和时间安排的陈述,其研究和开发计划,其潜在的研究计划以及公司计划的潜在进步和治疗潜力。本演讲中包含的所有陈述,除了历史事实的陈述外,包括有关公司战略,未来运营,未来财务状况,前景,计划和管理目标的陈述,都是前瞻性的陈述。单词“预期”,“相信”,“继续”,“可以”,“估计”,“期望”,“预期”,“打算”,“五月”,“计划”,“计划”,“潜在”,“预测”,“项目”,“项目”,“应该”,“目标”,“意志”,“意志”,“意志”和类似的表达方式,并不打算识别出远见的陈述,全部识别这些概述的陈述,这些陈述都包含这些识别的单词。任何前瞻性陈述均基于管理层对未来事件的当前期望,并受到许多风险和不确定性,这些风险和不确定性可能导致实际结果与此类前瞻性陈述中所提出的或暗示的陈述具有物质上和不利的差异。讨论其他风险和不确定性以及其他重要因素,其中任何一个可能导致公司的实际结果与前瞻性陈述中包含的结果不同,请参见“风险因素”部分,以及对公司最近与证券和交易委员会的最新情况的潜在风险,不确定性和其他重要因素的讨论。drs。这些风险和不确定性包括但不限于与公司有限的运营历史有关的风险;公司的时机和公司提交申请,并获得和维护其产品候选人的监管批准的能力;继续在临床试验中推进其候选产品;对预期的时间表或根本启动和注册临床试验;正确估计公司候选产品的潜在患者人数和/或市场;在临床前研究和/或Verve-101及其其他候选产品的临床前研究和/或更早的临床试验中发现的阳性结果;在当前和将来的临床试验中预期的时间表下,推动其候选产品的开发;获得,维护或保护与其产品候选人有关的知识产权;管理费用;并筹集实现其业务目标所需的大量额外资本。此外,本演示文稿中包含的前瞻性陈述代表了本文之日起的公司的观点,不应依靠代表公司的观点,截至此日期之后的任何日期。公司预计随后的事件和发展将导致公司的观点改变。但是,尽管公司可以选择在将来的某个时候更新这些前瞻性陈述,但该公司特别违反了任何这样做的义务。Jayaram,Kathiresan和Bellinger是Verve Therapeutics的员工。
我们提出了一个完全计算的工作流,用于使用自然蛋白质的主链片段从头设计,而无需访问迭代实验优化。最佳设计的KEMP消除酶表现出> 140个来自任何天然蛋白质,高稳定性(> 85℃)和前所未有的催化效率(12,700 m -1 S -1)的突变,超过了以前的计算设计。我们发现,在活性部位内部和外部的突变都会有助于高观察到的活性和稳定性。在所有先前的KEMP消除酶设计中使用的芳族残基的突变将效率提高到> 10 5 m -1 s -1。我们的方法解决了设计方法的临界局限性,在复杂折叠中产生稳定,高效率,新的酶,并通过有限的实验努力对生物催化基础的基础知识进行测试假设。
crispr/cas9系统被广泛用于广泛的基因编辑范围。虽然该基因编辑技术在目标区域非常准确,但可能有许多计划外的靶标地点。因此,已经开发了大量计算方法,以预测给定指导RNA和参考基因组的靶向切割位点。但是,这些方法基于通过实验技术生成的小规模数据集(仅数十个到数百个目标位点),以检测具有较低信噪比比率的O杀目标位点。最近,一种新的体外实验技术来检测目标位点,用于生产前所未有的规模和质量的数据集(超过110个指导RNA超过200,000个O杀靶网站)。此外,同一项研究还包括58个指南RNA的指南seq实验,以产生靶位点的体内测量。在这里,我们通过利用这些数据来对数据处理进行系统评估和CRISPR OB-OR杀害目标站点预测问题的系统评估,从而填补了以前的计算方法的差距。我们的评估表明,在模型培训之前,数据转换作为预处理阶段至关重要。此外,我们通过在培训数据集中添加潜在的无效目标站点来证明获得的改进。此外,我们的结果表明,将导向RNA和o靶位点之间的不匹配数量添加为特征的重要性。在本文中,我们提出了基于体外转移学习的体内模型中的预处理的靶标模型。我们的结论将对基于高通量数据集的o实量预测变量的未来开发有所帮助。
在CNS指示(例如抑郁症和精神分裂症)的临床试验中,安慰剂的反应率较高,构成了药物开发企业的主要挑战。尽管有关参与者的预期和其他有力的心理社会因素的文献,这些因素使安慰剂响应永存,但尚无经验验证的以参与者为中心的策略来减轻这种现象。这项研究评估了安慰剂控制提醒脚本(PCR)的效率,这是一种简短的互动程序,该程序对参与者进行了教育有关已知会导致安慰剂反应的因素,该因素是对主要抑郁症或精神病患者至少至少患有适度缓解抑郁症的受试者进行的。参与者被告知他们将参加为期2周的随机临床试验,有50%的机会接受实验性抗抑郁药或安慰剂。实际上,所有参与者都接受了安慰剂。参与者被随机分配接受PCR(n = 70)报告的抑郁症的降低显着较小(即安慰剂反应较少),而不是没有接受PCR的人(n = 67)。这种效果的大小是培养基(Cohen d = 0.40),并且没有受到诊断状态的显着影响。PCR组的不良事件数量(即NOCEBO效应)也较低,尤其是在研究的第一个星期。这些发现表明,对参与者的安慰剂反应因素进行教育,可以帮助减轻CNS药物开发计划中越来越多的安慰剂反应率。
尽管具有革命性的地位,但CRISPR/CAS技术确实具有明显的局限性和负债。CRISPR/CAS的最重要局限性是进行脱离目标编辑的潜力,因此CRISPR/CAS在意想不到的位置削减了DNA。这种脱离目标(OT)编辑可以扭曲功能实验的解释并引入噪声和可变性,从而降低实验结果和功能结论的可靠性。重要的是,在CRISPR的治疗应用中,OT活性尤其危险,即使频率非常低的OT编辑也可能具有深刻的灾难性结果2,3。为了应对这一挑战,该领域的许多努力都致力于改进Guiderna(GRNA)设计,以确保目标特异性4和工程CAS变体具有改善的忠诚度5。同时,测量OT效应的方法,例如指南seq 6,圆形序列7和site-seq 8,也有助于提高我们量化和合理化OT编辑的能力。此外,预测OT的能力对该领域的重要性提高,从而导致开发了多种用于预测OT位点的计算方法。
基本化是纳米孔测序分析中的重要步骤,其中将纳米孔测序仪的原始信号转化为核苷酸序列,即读取。最先进的基本收藏家采用复杂的深度学习模型来实现高基本的准确性。这使得基本计算效率低下且渴望记忆,从而瓶颈整个基因组分析管道。对于许多应用,大多数读取都与Interest的参考基因组(即目标参考)不匹配,因此在基因组学管道中的以后步骤中丢弃,浪费了基本的组合。要克服这个问题,我们提出了TargetCall,这是第一个消除基本浪费的计算的预淘汰过滤器。TargetCall的关键想法是丢弃在基本之前与目标参考(即,脱离目标读取)不匹配的读取。TargetCall由两个主要组成部分组成:(1)LightCall,一种轻量级的神经网络基本词,可引起嘈杂的读数; (2)相似性检查通过将它们与目标参考匹配,标记这些嘈杂的每个嘈杂的标记为“目标”或“脱离目标”。Our thorough experimental evaluations show that TargetCall 1) improves the end-to-end basecalling runtime performance of the state-of-the-art basecaller by 3.31 × while maintaining high ( 98.88% ) recall in keeping on-target reads, 2) maintains high accuracy in downstream analysis, and 3) achieves better runtime performance, throughput, recall, pre- cision, and generality compared to prior works.TargetCall可在https://github.com/cmu-safari/targetCall上找到。
CRISPR/CAS9作为可编程基因组编辑工具的广泛使用受到了脱靶DNA裂解的阻碍(Cong等,2013; Doudna,2020; Fu等,2013; Jinek et al。,2013)。虽然对此类脱离目标编辑事件的分析使CAS9变体的发展具有更大的歧视(Chen等,2017; Kleinstiver等,2016; Slaymaker等,2016),Cas9拒绝或接受Mismismatches的基本分子机制是贫穷的20; Slaymaker和Gaudelli,2021)。在这里,我们使用动力学分析来指导在不匹配监视的不同阶段的CAS9的低温EM结构测定。我们观察到在引导RNA(GRNA)和DNA靶链(TS)之间形成的双链体的独特,未描述的线性构象(TS),该(TS)发生在存在PAM-DISTAL不匹配的情况下,从而阻止Cas9激活。典型的扭结GRNA:TS双链体是CAS9激活的先决条件,充当结构支架,可促进Cas9构象型裂解所需的构象重排。我们观察到,高度耐受性的远端不匹配通过通过RUVC结构域中的柔性环稳定而稳定扭曲的双工构象来实现这种扭结的构象。我们的结果提供了对基本结构机制的分子见解,这些结构机制可能有助于通过CAS9进行离靶机制,并提供了一个分子蓝图,用于设计下一代高富达Cas9变体,可选择性地减少脱离目标DNA裂解,同时又有有效的触发型DNA,同时保留了有效的触发型DNA。
引入的构建体是通过CRISPR/CAS9系统诱导基因靶向敲除突变体的质粒载体。根据Smedley等人组装该质粒载体。,2021通过使用金门(GG,类型IIS限制酶)模块化克隆(MOCLO)组件。用于针对每个亚基因组中感兴趣基因的三个同源副本(a,b和d),在三个亚基因组的第一个外显子中选择了两个单个引导RNA(SGRNA)序列(sgrNA)序列(guide_2和gude_3)。如Smedley等人所述,使用WheatCrispr工具用于选择SGRNA。,2021。考虑了预测的目标和脱靶切割效率;预计SGRNA脱离目标得分的值为“ 0”,相当于根据WheatCrispr工具在其他遗传或基因间区域中的“无预测命中”。
DNA折纸为精确定义的分子纳米结构的序列可编程生成具有100 nm的大小提供了一种方法。该领域的一个新边界是由DNA折纸亚基制成的上层建筑,它需要除了用于DNA折纸本身的策略。当前方法面临的挑战包括结构和脱离目标组装的复杂性,成本和开发时间的增加。在这里,我们证明了如何受到脂质的结构和相互作用的辐射对称折纸亚基,该脂质的结构和相互作用组织成巨大的DNA折纸单层膜,这些膜可以被读取以形成囊泡或空心管,直径为100 nm至100 nm至1 µm。DNA折纸膜是一种空前的隔室化方法,为自下而上的生物学和细胞尺度软机器人技术打开了新的可能性。