靶向蛋白质的降解是一种新兴而有希望的治疗方法。降解的特异性和细胞稳态的维持是由E3泛素连接酶和脱脂信号(称为Degrons)之间的相互作用确定的。人类基因组编码超过600个E3连接酶;但是,到目前为止,仅确定了少数目标的DEGRON实例。在这项研究中,我们引入了DeGronmd,这是一个开放知识库,旨在研究DEGRON,它们相关的功能障碍事件和药物反应。我们驱逐出来,degrons在进化上是保守的,并且倾向于在蛋白质翻译修饰部位附近发生,尤其是在无序结构和较高溶剂可访问性的区域。通过模式识别和机器学习技术,我们构建了跨人类蛋白质组的降解景观,产生了超过18,000个新的脱脂剂,用于靶向蛋白质降解。此外,DEGRON的功能障碍会破坏降解过程,并导致蛋白质的异常积累。此过程与各种类型的人类癌症有关。基于由体细胞突变引起的估计表型变化,我们从系统地进行了量化并评估突变对pan-Canters degron功能的影响;这些结果有助于建立有关人类降解的全球突变图,其中包括89,318个可起作用的突变,这些突变可能引起降解和破坏蛋白质降解途径的功能障碍。多组合综合分析揭示了与功能性脱粒突变相关的400多个耐药性事件。degronmd,可在https://bioinfo.uth.edu/degronmd上访问,是探索生物学机制,推断蛋白质降解以及在Degron上的药物发现和设计的有用资源。
背景:低钠血症的快速纠正,尤其是在严重和慢性的情况下,可能导致渗透性脱粒化。诊断和治疗低钠血症的最后一个指南(2014年)建议校正限制为10 meq/l/天。我们的目标是总结已发表的渗透性脱髓鞘案例,以评估该建议的充分性。方法:渗透性脱髓鞘病例报告的系统审查。,我们以1997年至2019年在1997年至2019年发表的英语或葡萄牙语中出版的18岁以上的图像或病理解剖学案例包括确认的病例。结果:我们评估了96例渗透脱髓鞘,女性的58.3%,平均年龄为48.2±12.9岁。中位入院钠为105 MEQ/L,> 90%的患者患有严重的低钠血症(<120 MEQ/L)。胃肠道疾病(38.5%),埃菲主义(31.3%)和利尿剂使用(27%)的报告很常见。低钠血症矫正主要用等渗盐水(46.9%)或高渗(33.7%)进行。相关的低钙矫正发生在18.8%。在66.6%的病例中,住院第一天对纳特血症的纠正高于10 meq/l;速度没有报道为22.9%,只有10.4%的速度小于10 meq/ l/天。结论:在50岁以下的患有严重低钠血症和快速纠正的女性中,渗透性脱髓鞘化的发展主要是主导。在10.4%的病例中,即使校正<10 meq/l/day也存在脱髓化。这些数据加强了对高风险患者的保守目标的需求,例如4-6 meq/l/天,不超过8 meq/l/day的极限。
摘要:基于自然减弱或转基因病毒的非洲猪发烧病毒(ASFV)的候选疫苗有可能产生保护性免疫反应,尽管在定义针对ASFV的保护性免疫反应方面尚无共识。研究,尤其是在明智的宿主物种中,专注于揭示保护机制的研究将有助于开发更安全,更有效的疫苗。本研究对表型和功能数据进行了详细的分析,这些数据对细胞内免疫感引起的细胞反应以及随后使用自然减弱的现场菌株LV17/WB/RIE1的自然减弱的家养猪的促进,以及对抗激内挑战的机制以及对抗激发攻击的机制,以抗抗性的II型II II II Armenia/07 Learteria。在免疫后观察到的血清中IL-8和IL-10的瞬态轻度至中度增加可能与存活直接相关。保护也与强大的ASFV特异性多功能记忆T细胞反应有关,其中CD4CD8和CD8 T细胞被鉴定为病毒特异性IFNγ和TNFα的主要细胞来源。与细胞因子反应并行,这些T细胞亚群还显示出特异性的细胞毒性活性,这是CD107A脱粒标记的表达增加所证明的。与病毒 - 特异性多功能CD4CD8和CD8 T反应一起,在免疫猪中挑战后观察到的抗原经历的细胞毒性CD4 T细胞的水平增加也可能通过杀死靶向感染抗原抗原细胞的机制来导致对控制的有毒感染。未来的研究应阐明本研究中是否证明了记忆T细胞反应是否持续存在,并为进一步的ASFV感染提供了长期保护。
一般而言,作物的起源中心与其最大程度的多样性有关。然而,也应注意,作物在驯化和栽培的过程中可能会形成多个多样性中心(Harlan,1971;Harlan,1975)。提出的驯化过程长期多中心模型特别适用于栽培作物,而不适用于其野生近缘种,因为栽培作物受到的人工选择压力较大,而野生近缘种只受到自然选择压力(Allaby 等人,2008)。这反映在一种作物的不同种质种质中多种性状以阵列模式共存于多个位置,每个种质都拥有不同的感兴趣性状组合(Esquinas-Alca zar,2005)。例如,为了表示水稻的谷粒大小和颜色、植株结构、种子落粒性(但适合脱粒)、各种非生物和生物胁迫耐受性、糯粒、开花时间和生命周期(短、中、长周期)等性状的完全变异性,我们需要大量的基因型(Izawa,2022 年;Shang 等人,2022 年)。如果我们将驯化过程中选择压力的结果以性状与变异性的形式列出,每个细胞包含适当的基因型,我们将获得一系列代表不同表型性状及其内部变异性的种质。这将揭示,如果特定基因型丢失,作物植物更容易受到遗传侵蚀(与作物野生近缘种 CWR 相比)。这是因为尽管存在自然选择压力,但农作物野生亲缘植物由于缺乏人工选择压力而未能多样化(在排列模式上)。保护这些珍贵的农作物遗传资源和农作物野生亲缘植物对于通过持续的农作物改良实现粮食安全至关重要。
背景:慢性自发性荨麻疹(CSU)是一种慢性,免疫介导的皮肤病学,其特征是复发性的Wheals和/或血管性水肿,没有识别能识别的外部触发因素。其发病机理主要由免疫失调,涉及肥大细胞脱粒,组胺释放和自身免疫过程,包括针对IgE或其受体的自身抗体。新兴证据表明,益生菌可以通过诸如肠道菌群调节,系统性炎症减少以及调节性T细胞活性的增强的机制来调节免疫反应,从而使CSU患者受益。材料和方法:这种前瞻性,单一中心,双盲,安慰剂对照的随机对照试验旨在评估CSU患者的多型益生菌作为辅助治疗的效率。共有97名患者被随机分为两组:实验组接受了具有多应变益生菌的左旋替替氨酸,而对照组则接受了带有安慰剂的左旋塞提嗪。对葡萄丝嘧啶不耐受的患者被送给双甲胺作为替代品。使用经过验证的措施,包括瘙痒严重程度,蜂箱严重程度得分和荨麻疹控制测试(UCT)评估临床结果。结果:与对照组相比,实验组的患者表现出对瘙痒严重程度的高度控制。但是,在两组之间的蜂箱严重程度得分或UCT结果中没有观察到统计学上的显着差异。这些发现表明,当用作标准抗组胺药疗法的辅助手段时,益生菌在减轻症状方面具有特定的益处。结论:这项研究强调了益生菌作为CSU的辅助治疗的潜力,尤其是在降低瘙痒的严重程度方面。益生菌的免疫调节特性为CSU管理中未来的治疗策略提供了有希望的途径。
使用高通量透析或血液透露方式去除。补体激活被认为是生物兼容性的关键事件。但是,它是透析疗程结束时的早期和瞬态事件,过敏毒素水平归一化。补体激活通常被认为会触发白细胞刺激,从而导致促炎介质的分泌和氧化爆发。除了是消除物理和酶微生物所涉及的先天免疫反应外,中性粒细胞外陷阱(NETS)的形成(Netosis)最近被确定为与炎症过程相关的广泛病理学中的主要有害成分。网络是由通过NADPH氧化酶产生的活性氧诱导的中性粒细胞脱粒而产生的,由丝氨酸蛋白酶,弹性蛋白酶,杀菌蛋白和骨髓过氧化物酶(MPO)的改良染色质组成,产生低氯氯氯化物含量。目前,Netosis作为透析中生物兼容性的敏感和综合标记的研究仍然很糟糕。文献中只能发现稀缺数据。氧化爆发和NADPH氧化酶激活是生物兼容现象中的知名事件。净副产品(例如弹性酶,MPO和循环DNA)在透析患者中更具体地增加了透析患者的增加,并被确定为预后不良的预测指标。由于网和MPO可以通过内皮吸收,因此网被认为是间歇性生物兼容现象的血管记忆。在这篇有效的假设文章中,我们总结了拼图片段,显示了血液透析过程中净形成的参与,并假设Netosis可能是一种疾病修饰剂,并可能有助于与透析生物兼容性相关的合并负担。
摘要。森林生态系统的氮(n)状态的变化可以通过改变土壤有机含量(SOM)分解,土壤酶活性和植物 - 土壤相互作用,直接和间接地影响其car(c)隔离潜力。但是,链接的C – N周期和SOM衰减的模型表示未通过实验数据得到很好的验证。在这里,我们使用来自现有实验性森林的长期全挥发性研究的大量数据来比较两个土壤模型的n扰动的响应,这些响应以不同的方式代表分解动态的n扰动性(第一阶衰变与微生物显式脱粒的重新确定重新介绍了Michaelis-Michaelis-enteren Kinetics)。这两个土壤模型与提供相同输入数据的常见植被模型耦合。对研究地点测得的N添加的关键反应包括植物分配的转移,以有利于木质生物量在地下碳输入上,土壤呼吸减少,颗粒有机含量(POM)的积累以及土壤C:N比的增加。植物模型并未捕获植物C分配中经常观察到的转移,而n添加了n添加,从而导致土壤反应的前提不佳。我们修改了植物c分配方案的参数,以促进木材生产,而不是添加n个添加物,从而显着改善了植被和土壤呼吸的重音。此外,为了引起土壤C库存的增加和c:n比的增加,如所观察到的,我们修改了土壤模型中POM的衰减速率。通过这些修改,两种模型均捕获了负面的土壤呼吸和阳性土壤C库存反应,
fi g u r e 1在健康或患病的皮肤中,金黄色葡萄球菌,天然皮肤分子和宿主细胞之间的相互作用。在健康的皮肤上(左),诸如凝聚酶阴性葡萄球菌(CONS)和真菌Malassezia等共生分泌多种化合物,以抑制金黄色葡萄球菌的生长(S. aureus)。分泌苯酚可溶蛋白(PSM)和自动诱导肽,它们分别抑制金黄色葡萄球菌的生长和毒力因子的表达。缺点可以刺激宿主表皮细胞产生抗微生物肽(AMP),以进一步抑制金黄色葡萄球菌的生长。CONS和CONSAL MALASSEZIA也分泌各种蛋白酶,这些蛋白酶破坏了金黄色葡萄球菌生物膜的形成。这些机制有助于T细胞耐受性,并可能优化健康皮肤上的屏障功能。但是,尚不清楚这些蛋白酶是否也可能在某种程度上破坏宿主屏障。在发炎的皮肤上(右),金黄色葡萄球菌定植和生物膜形成增加会导致毒力因子的分泌增加,例如PSMS,毒素和蛋白酶,损害了角膜层。主机放大器的存在较低,或者由于金黄色葡萄球菌的活性和Th2信号传导而效果较低。S.金黄色葡萄球菌还可以抑制皮肤分子的生长或活性。超抗原可以穿透表皮并触发皮肤树突状细胞,以驱动T辅助2(Th2)极化和膨胀。虽然没有发炎的前剥皮皮肤(中间),但抑制金黄色葡萄球菌的份量可能会下降,可能促进过渡到致病状态。多数TH2细胞又产生多种促炎性细胞因子,这进一步加剧了皮肤屏障功能障碍,B细胞产生IgE和肥大细胞脱粒。与健康的皮肤相比,这些人的Th2反应升高和IgE升高,并且在随后的耀斑中倾向于严重的瘙痒。(使用biorender.com创建)。
我们检验了以下假设:自愿性轮毂运行将补充微型肌营养物基因治疗以改善幼体MDX小鼠的肌肉功能,这是Duchenne肌肉营养不良的模型。MDX小鼠在7周时注射了单剂量的AAV9-CK8-微畸形或媒介物为三组:MDXRGT(RUN,Gene Therapy),MDXGT(无运行,基因治疗,基因治疗)或MDX(无运行,无基因治疗)。野生型(WT)小鼠被分配给WTR(RUN)和WT(无运行)组。wtrand mdxrgtperformed自愿车轮运行21周;其余的组是笼子活跃的。在治疗的小鼠的心脏和肢体肌肉中,微肺炎的强大表达出现。mdxrgt与mdxgt小鼠的股四头肌中的微肌营养物增加增加,但在脱粒率中的水平降低。与所有组相比,MDX最终跑步机疲劳时间都降低,MDXGT的改善,MDXRGT中的最高。MDXRGT和WTR的每周跑步距离(km)和最终胎面疲劳时间都相似。明显地,MDXRGT diaphragm diaphragm power仅挽救了WT的60%,这表明跑步的负面影响。然而,MDXRGT隔膜中的纤维类型分布的计量变化可能表明适应了贸易能力的耐力。与基线相比,MDXGT和MDXRGT与所有其他组相对于基线值在体内最大底层扭矩相对于基线值较大。 在MDXGT动物中,红色四四稻的线粒体呼吸速率显着改善,但是在MDXRGT组中观察到了最大的生物能有益。 与微滞后蛋白在体内最大底层扭矩相对于基线值较大。在MDXGT动物中,红色四四稻的线粒体呼吸速率显着改善,但是在MDXRGT组中观察到了最大的生物能有益。与微滞后蛋白其他评估显示,相对于WT,MDXGT和MDXRGT肌肉的完全功能恢复部分。这些数据表明,在年轻的MDX小鼠中,自愿性车轮和微肌营养物基因治疗相结合,改善了全身性能,影响肌肉的功能差异,减轻了能量的定性,但也揭示了一些有害的运动作用。
引言哮喘影响着全球约3亿人,每年估计造成25万人死亡(1)。过敏性哮喘的特征是气道阻塞,是由平滑肌的结合,粘液产生和慢性气道炎症引起的,主要由自适应免疫系统的Th2细胞驱动。它通过过敏原特异性IgE进一步增强,这些IgE先天效应器2型免疫细胞和DC,以增加过敏原捕获(2-7)。过敏性哮喘的病理学的关键方面是气道嗜酸性粒细胞的丰度,这有助于许多关键改变,包括粘液塞的形成和气道中的上皮损害(8-11)。B细胞在过敏性气道疾病(AADS)中具有良好的作用,主要是通过以IL-4依赖性方式产生过敏的特异性类别开关免疫球蛋白IgE和IgG1。这些高亲和力抗体主要由常规的“ B2” B淋巴细胞作为生发中心反应的一部分,并促使肥大细胞脱粒和嗜碱性粒细胞激活,从而增强炎症反应(12-18)。然而,B2 B细胞及其分泌的抗体参与后期嗜酸性嗜酸性粒细胞增多症的出现仍然存在争议,其必要性报道矛盾(19-28)。虽然被广泛接受的是,Th2细胞的激活对于嗜酸性粒细胞炎症至关重要,但以前认为B细胞在启动Th2细胞启动中并不具有重要作用,但对于在有限的过敏原暴露条件下随后TH2细胞扩展是必要的(29,30)。AAD中B细胞引起争议的一个原因是Mumt小鼠模式的广泛使用,由于免疫球蛋白MU链基因破坏了,该Mumt小鼠模型缺乏成熟的B细胞(31)。我们小组的最新发现表明,该模型隐藏了B细胞在各种模型中启动1型免疫反应中的重要作用(32,33)。B细胞参与实验AAD的争议也源于模型差异。例如,广泛使用的明矾摩娃小鼠模型涉及通过i.p.敏化小鼠。在氢氧化铝(校友)中注射抗原OVA乳化剂,然后是气道OVA挑战。该模型主要依赖于尿酸的辅助性,