摘要:psilocybin是Psilocybe Carpophores的精神色氨酸衍生的天然产品,即所谓的“魔术蘑菇”。尽管其结构已知已有60年,但其生物合成的酶基础仍然晦涩难懂。我们表征了四种psilocybin生物合成酶,即i)PSID,它代表了一类新的真菌l- tryptophan脱羧酶,ii)PSIK,催化磷酸转移步骤,III)单加氧酶。在组合的PSID/PSIK/PSIM反应中,psilocybin在从4-羟基ltrypto-phan的逐步经济途径中合成。鉴于psilocybin的新药兴趣,我们的结果可能为其生物技术生产奠定了基础。psilocybe属的无蘑菇会产生精神活跃的天然产物,在摄入时会深刻改变感知。几个世纪以来,中美洲文化都认为这些蘑菇神圣,并将它们用于精神目的。最近,腕足被用作休闲药(被称为“魔术蘑菇”)。药理学作用是由修饰的色素引起的,[1] psilocybin(1,方案1)是这些真菌的主要化学成分。[2]这种类似前药的天然产物在口服摄入后迅速被磷酸化,以产生实际的精神剂psilocin(2),该毒素主要充当人类中枢神经系统中5HT 2A受体的部分激动剂。[4][1]化合物1吸引了药物注意力,因为临床研究表明,治疗先进癌症患者和尼古丁成瘾的存在焦虑症的积极趋势。[3] Studies on the clinical use of 1 against depression are ongoing.
工业微生物学乙醇的产生:乙醇(乙醇)Ch 3 Ch 2 OH可以通过合成化学方法或发酵产生。乙醇(也称为生物乙醇)是通过富含葡萄糖或蔗糖培养基的发酵产生的,在没有氧气的情况下,酒精的产生最佳。最常见的乙烯类微生物是酵母菌,其中包括酿酒酵母,Schizosacachomyces spp。,Candida spp。,Kluyveromyces Lactis,Pichia spp。,Pichia spp。细菌,例如Mobilis,梭状芽孢杆菌和leuconostoc mesenteroides也参与了酒精发酵。参与这些酒精发酵的酵母主要是酿酒酵母的菌株,不能直接发酵淀粉。使用乙醇(1)用作化学饲料库存:在化学工业中,乙醇在许多化学过程中都是中间体。(2)溶剂使用:乙醇在行业中广泛用作染料,油,蜡,化妆品等的溶剂等。(3)一般公用事业:酒精被用作医院中的消毒剂,在家中进行清洁和照明,在实验室中,仅次于水作为溶剂。(4)燃料:乙醇与高达10%的汽油或汽油混合,被称为Gasohol。乙醇产生的生物化学该过程从糖通过糖甲酸糖(EMP)途径(EMP)途径开始,然后在厌氧条件下通过丙酮酸型脱羧酶在厌氧条件下转化为乙醛。乙醛进一步释放了两个分子的二氧化碳,并通过酒精脱氢酶形成乙醇。
认知表现和最终痴呆症中的大量浮动是α-核核中疾病的重要特征,例如帕金森氏病和刘易体内痴呆,与皮质功能障碍有关。已经建议在患者的大脑皮层中存在错误折叠和聚集的α-核蛋白,在此过程中起着至关重要的作用。然而,A-突触核蛋白积累对体内细胞分辨率在细胞分辨率功能的功能的后果在很大程度上是未知的。在这里,我们使用野生型小鼠中的纹状体播种模型在大脑皮层中诱导了鲁棒的A-核蛋白病理。在单次注射A-突触核蛋白预构纤维的九个月后,我们观察到通过体内两光子钙在清醒小鼠中的体内两光子钙在体体皮质中的2/3层皮质神经元的功能发生了深刻的改变。我们检测到自发活性水平的提高,对搅拌和同步增加的反应增强。立体分析表明,在注射预构纤维的小鼠的体感皮层中,谷氨酸脱羧酶67阳性抑制性神经元减少。重要的是,这些发现指出了令人不安的激发/抑制平衡是电路功能障碍的相关驱动因素,这可能是α-突触性核核酸的认知变化。
摘要简介Rabson - Mendenhall综合征(RMS)是一种常染色体疾病,观察到严重的胰岛素抵抗。胰岛素水平随时间降低并抑制肝脏中的糖异生。 脂肪酸氧化受到影响,导致酮酸病经常发作。 RMS的变化比2型糖尿病患者快得多。 RMS患者的预期寿命显着降低,并且可能在青春期或成年初期死亡。 案例表现,一个15岁的女孩表现出控制不良的糖尿病。 她在50天时被诊断出患有RMS,她的遗传研究显示INSR基因中R141W的纯合突变。 她的胰岛素水平在737μEU/mL,胰岛素瘤抗原2和谷氨酸脱羧酶抗体为阴性,C肽> 18 ng/mL。 她母亲的一面有很强的RMS家族史。 她的高血糖用胰岛素泵(最多需要300次胰岛素/天需要)和口服罗斯基列酮治疗。 罗马列酮被口服胰岛素样生长因子1(IGF1)取代。 在过去的三年中,她又有四个发作的糖尿病性酮症酸中毒,这些发作是由感染和严重的Lipodys-奖杯引起的。 瘦素和皮下IGF1的试验失败了。 该患者的闭环胰岛素泵最小的780克,每日总剂量为261个单位(4.6 u/kg/day)。 结果在过去15年中,患者遭受了许多健康,心理,家庭和学校问题。 尽管技术有局限性,但在适当使用时仍然有所帮助。胰岛素水平随时间降低并抑制肝脏中的糖异生。脂肪酸氧化受到影响,导致酮酸病经常发作。RMS的变化比2型糖尿病患者快得多。RMS患者的预期寿命显着降低,并且可能在青春期或成年初期死亡。案例表现,一个15岁的女孩表现出控制不良的糖尿病。她在50天时被诊断出患有RMS,她的遗传研究显示INSR基因中R141W的纯合突变。她的胰岛素水平在737μEU/mL,胰岛素瘤抗原2和谷氨酸脱羧酶抗体为阴性,C肽> 18 ng/mL。她母亲的一面有很强的RMS家族史。她的高血糖用胰岛素泵(最多需要300次胰岛素/天需要)和口服罗斯基列酮治疗。罗马列酮被口服胰岛素样生长因子1(IGF1)取代。在过去的三年中,她又有四个发作的糖尿病性酮症酸中毒,这些发作是由感染和严重的Lipodys-奖杯引起的。瘦素和皮下IGF1的试验失败了。该患者的闭环胰岛素泵最小的780克,每日总剂量为261个单位(4.6 u/kg/day)。结果在过去15年中,患者遭受了许多健康,心理,家庭和学校问题。尽管技术有局限性,但在适当使用时仍然有所帮助。这些问题是由于RMS本身,糖尿病并发症,药物的副作用以及技术失败引起的。我们的多学科团队通过提供最合适的护理,调解和技术来解决所有问题。结论要比疾病进展更快,我们需要知道患者可能面临的整个问题,因为这将有助于我们查看整个情况,而不是分开处理不同的部分。团队之间的有效合作至关重要,需要通过家庭医生或参与患者护理最多的团队进行组织。
抽象目标的代谢变化至关重要地参与破骨细胞的发育,并可能导致类风湿关节炎(RA)的骨骼降解。已知酶辅酶脱羧酶1(ACOD1)将单核细胞衍生的巨噬细胞的细胞功能与其代谢状态联系起来。作为源自单核细胞谱系的破骨细胞,我们假设ACOD1及其代谢产物在破骨细胞分化和关节炎相关的骨质流失中的作用。方法是在人类外周血单核细胞(PBMC)中测量了RA和健康对照患者的质谱法。在体外用Itaconate衍生物4-辛基 - 乙酸盐(4-OI)处理人和鼠骨细胞。使用K/BXN血清诱导的关节炎和人TNF转基因(HTNFTG)小鼠,我们检查了ACOD1缺乏和4-OI治疗对小鼠骨侵蚀的影响。场景和细胞外通量分析用于评估破骨细胞和破骨细胞祖细胞的代谢活性。ACOD1依赖性和依赖性蛋白酶依赖性变化。CRISPR/CAS9基因编辑用于研究低氧诱导因子(HIF)-1α在ACOD1介导的破骨细胞发育调节中的作用。RA患者的PBMC中的Itaconate水平与疾病活性成反比。ACOD1-缺陷小鼠在实验性关节炎中表现出增加的破骨细胞数量和骨侵蚀,而4-OI治疗减轻了体内炎症性骨质损失,并抑制了体外人和鼠类骨细胞分化。从机械上讲,ACOD1通过抑制琥珀酸酯脱氢酶的活性氧和HIF1α介导的有氧糖糖溶解的诱导来抑制破骨细胞分化。结论ACOD1和ITACONATE是炎性关节炎中破骨细胞分化和骨质流失的关键调节剂。
2型糖尿病(T2D)是全球增加最快的疾病之一。尽管它是由单一代谢产物葡萄糖定义的,但它越来越被认为是一种高度异质性疾病,具有不同的临床表现。在疾病的早期阶段可以识别不同的亚型,当时可能仍可以预防并发症,希望可以允许更多个性化的药物。迈向精确医学的重要一步是将正确的资源定位于正确的患者,从而改善患者的健康并降低社会的健康成本。更明确的疾病人群还为实验,遗传和临床研究提供了增加的功率。在最近的一项研究中,我们使用了六个临床变量(谷氨酸脱羧酶自身抗体,糖尿病发作时的年龄,糖化血红蛋白,BMI和简单的胰岛素抵抗和胰岛素耐药性和胰岛素分泌的方法(所谓的HOMA估计)(所谓的HOMA估计)将成人糖尿病患者聚集为五个糖尿病患者。这些亚组在全世界的几个人群中都得到了牢固地再现,并且与糖尿病并发症的不同风险和对治疗的反应有关。重要的是,患有严重胰岛素缺乏糖尿病的组患有视网膜病变和神经病的风险增加,而严重的耐胰岛素糖尿病组的糖尿病肾脏疾病(DKD)和脂肪肝的风险最高。这强调了胰岛素抵抗在T2D中DKD和脂肪肝发病机理中的关键作用。总而言之,这种新颖的子分类分类,在临床上有意义的亚组中分解了T2D,为在糖尿病中扩大个性化医学提供了前提框架,超出了已经可用于单基因的糖尿病,并且在某种程度上是1型糖尿病。
印度尼西亚雅加达综合医院 2 印度尼西亚大学医学院内科 *通讯作者:M. Ikhsan Mokoagow,医学博士,医学硕士,理学硕士。印度尼西亚雅加达法特玛瓦蒂中央综合医院内科内分泌、代谢和糖尿病科。电子邮件:mimokoagow@gmail.com。摘要糖尿病酮症酸中毒 (DKA) 是糖尿病的急性代谢并发症。虽然它最常发生在 1 型糖尿病 (T1DM) 中,但 DKA 也可能发生在其他类型的糖尿病中。遇到 DKA 病例需要进一步评估以确定糖尿病类型并对患者进行相应治疗。通过临床方法对表现不寻常的 DKA 病例进行糖尿病类型的诊断。一名 30 岁男性因突发呼吸困难到急诊室就诊。实验室检查显示血糖水平为 506 mg/dL,血酮水平为 2.6 mmol/L,碳酸氢盐水平为 5 mEq/L。他的糖化血红蛋白为 15.3%。他之前没有被诊断出患有糖尿病。研究表明,不同类型的糖尿病的 DKA 临床和生化参数存在重叠。在采取挽救生命的治疗措施后,应进行进一步的临床和实验室评估。自身抗体滴度(即:抗谷氨酸脱羧酶、胰岛抗原 2、锌转运蛋白 8 和胰岛素的自身抗体)和 c 肽水平的测量可能有助于确定该患者的糖尿病类型。在年轻人中确诊某种类型的糖尿病可能具有挑战性。根据临床特征,该患者被推定诊断为自身免疫性糖尿病,特别是成人隐匿性自身免疫性糖尿病 (LADA)。关键词:糖尿病、糖尿病酮症酸中毒、成人隐匿性自身免疫性糖尿病、青年人
摘要 合理设计气体发酵细菌以获得高产量的生物产品对于可持续的生物经济至关重要。它将使微生物底盘能够更有效地从碳氧化物、氢气和/或木质纤维素原料中再生利用自然资源。迄今为止,合理设计气体发酵细菌(例如改变单个酶的表达水平以获得所需的途径通量)具有挑战性,因为途径设计必须遵循可验证的代谢蓝图,指示应在何处执行干预措施。基于基于约束的热力学和动力学模型的最新进展,我们确定了与异丙醇生产相关的气体发酵产乙酸菌杨氏梭菌中的关键酶。为此,我们整合了一个代谢模型并与蛋白质组学测量结果进行比较,并量化了改善异丙醇生物生产所需的各种途径目标的不确定性。基于计算机热力学优化、最小蛋白质需求分析和基于集成建模的稳健性分析,我们确定了两个最重要的通量控制位点,即乙酰乙酰辅酶A(CoA)转移酶(AACT)和乙酰乙酸脱羧酶(AADC),其过表达可导致异丙醇产量增加。我们的预测指导了迭代途径构建,与初始版本相比,异丙醇产量增加了2.8倍。该工程菌株在气体发酵混合营养条件下进行了进一步测试,当提供CO、CO 2 和果糖作为底物时,可产生超过4 g/L的异丙醇。在仅用CO、CO 2 和H 2 通入的生物反应器环境中,该菌株产生2.4 g/L的异丙醇。我们的工作强调,可以通过定向和精细的途径工程对气体发酵罐进行微调,以实现高产量生物生产。
抽象目标的代谢变化至关重要地参与破骨细胞的发育,并可能导致类风湿关节炎(RA)的骨骼降解。已知酶辅酶脱羧酶1(ACOD1)将单核细胞衍生的巨噬细胞的细胞功能与其代谢状态联系起来。作为源自单核细胞谱系的破骨细胞,我们假设ACOD1及其代谢产物在破骨细胞分化和关节炎相关的骨质流失中的作用。方法是在人类外周血单核细胞(PBMC)中测量了RA和健康对照患者的质谱法。在体外用Itaconate衍生物4-辛基 - 乙酸盐(4-OI)处理人和鼠骨细胞。使用K/BXN血清诱导的关节炎和人TNF转基因(HTNFTG)小鼠,我们检查了ACOD1缺乏和4-OI治疗对小鼠骨侵蚀的影响。场景和细胞外通量分析用于评估破骨细胞和破骨细胞祖细胞的代谢活性。ACOD1依赖性和依赖性蛋白酶依赖性变化。CRISPR/CAS9基因编辑用于研究低氧诱导因子(HIF)-1α在ACOD1介导的破骨细胞发育调节中的作用。RA患者的PBMC中的Itaconate水平与疾病活性成反比。ACOD1-缺陷小鼠在实验性关节炎中表现出增加的破骨细胞数量和骨侵蚀,而4-OI治疗减轻了体内炎症性骨质损失,并抑制了体外人和鼠类骨细胞分化。从机械上讲,ACOD1通过抑制琥珀酸酯脱氢酶的活性氧和HIF1α介导的有氧糖糖溶解的诱导来抑制破骨细胞分化。结论ACOD1和ITACONATE是炎性关节炎中破骨细胞分化和骨质流失的关键调节剂。
在谷氨酸脱羧酶 (GAD) 抗体谱系疾病中,最常见的表型亚群是僵硬人综合征 (SPS),它是由 GABA 能抑制性神经传递受损和自身免疫引起的,其特征是 GAD 抗体滴度非常高以及 GAD-IgG 鞘内合成增加。如果不及时治疗或因诊断延迟而未治疗,SPS 会进展导致残疾;因此,从一开始就应用最佳治疗方案是至关重要的。本文重点讨论基于 SPS 病理生理学的具体治疗策略的原理,针对受损的相互 GABA 能抑制以对症改善躯干和近端肢体肌肉僵硬、步态功能障碍和发作性疼痛性肌肉痉挛的主要临床表现和自身免疫以增强改善并减缓疾病进展。提供了一种实用的、循序渐进的治疗方法,强调了联合疗法的重要性,首选的γ-氨基丁酸增强型解痉药物,如巴氯芬、替扎尼定、苯二氮卓类和加巴喷丁,可提供一线对症治疗,同时详细介绍了当前免疫疗法的应用,包括静脉注射免疫球蛋白 (IVIg) 血浆置换和利妥昔单抗。强调了不同年龄组(包括儿童、计划怀孕的妇女,尤其是考虑到合并症的老年人)的长期治疗的缺陷和问题,也强调了区分长期应用疗法的调节效果或期望与客观有意义的临床益处的挑战。最后,讨论了未来基于疾病免疫发病机制和自身免疫性兴奋过度的生物学基础的靶向免疫治疗方案的必要性,指出了未来对照临床试验设计中面临的独特挑战,特别是在量化僵硬、偶发性或惊吓引发的肌肉痉挛、任务特定性恐惧症和兴奋的程度和严重程度方面。