l i n g l i n *,l a u a u r e n yo u n g *,j e n n y o l i n s *,j e r e m y d e c k e r,a l e x a n d e r j。l i q u o r i,s。yi n g y i n g z h a n g,h a i h u a c h u,d a i s y l a m,c o n r a d r a d r i n a l d i d i,a d r i a n d r i a n P. r y b y b a k,m i c h a e l s。p a c k e r,n i c o l e m。g a u d e l l i,l u i s b a r r e r a r a r a r a r a r a r a r a r y m a r a r s h a l l l l l l l,m a t t h t h a l l l l,m a t t h u m e s,b o b o b g a n t z e r,b r i a n c a f f e f f e f f e f e r t y, N M O H A N S I N G H,A D A M J。h a r t i g a n,g i u s e p p e c i a r a m e l l a
• 脱氨酶的定向进化 • PAM 变体碱基编辑器 • 定向进化 Cas9 以创建用于 BE 的非 NGG PAM 变体 • 密码子、NLS 和接头优化 • 环状置换体和镶嵌碱基编辑器 • DNA 脱靶评估 • RNA 脱靶评估 • 旁观者编辑最小化 • 引导 RNA 工程 • 离体和体内 BE 递送 • 最小化脱靶活性的工程 BE • HSC、肝细胞和 T 细胞的离体碱基编辑 • ABE 的低温电子显微镜结构 • 小鼠体内碱基编辑 • 非人类灵长类动物体内编辑
自 20 世纪 80 年代初发现人类免疫缺陷病毒 1 型 (HIV-1) 以来,该感染已导致 3900 万人死亡。科学家一直未能找到 HIV-1 的治愈策略,但基因编辑技术(如成簇的规律间隔短回文重复序列 (CRISPR)/CRISPR 相关蛋白 9 (Cas9))为开发 HIV 感染的治疗方法提供了一种新方法。虽然 CRISPR/Cas9 系统已成功用于多种不同类型的研究,但人们仍然担心脱靶效应。本综述详细介绍了 Cas9 系统的不同方面以及它们在脱靶事件中的作用。此外,本综述还介绍了目前可用于检测脱靶切割事件的技术及其优缺点。虽然一些研究已经利用了全基因组测序 (WGS),但这种方法牺牲了对整个基因组的覆盖深度。现在已经开发出多种不同的方法来利用下一代测序 (NGS),而不会牺牲覆盖深度。本综述重点介绍了四种广泛使用的检测脱靶事件的方法:(1) 通过测序实现的全基因组无偏双链断裂事件识别 (GUIDE-Seq),(2) 发现原位 Cas 脱靶并通过测序进行验证 (DISCOVER-Seq),(3) 通过测序进行环化以在体外报告切割效果 (CIRCLE-Seq),以及 (4) 原位断裂标记和测序 (BLISS)。这些技术各有优缺点,但都围绕捕获 Cas9 内切酶催化的双链断裂 (DSB) 事件。能够定义脱靶事件对于 HIV-1 的基因治疗治愈策略至关重要。
(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2022 年 2 月 10 日发布。;https://doi.org/10.1101/2022.02.09.479813 doi:bioRxiv preprint
靶向蛋白质的药物的脱靶毒性会造成巨大的健康和经济成本。蛋白质组相互作用研究可以揭示非目标蛋白质的脱靶效应;然而,很少有人关注细胞内 RNA 作为可能导致毒性的潜在脱靶。为了开始评估这一点,我们开发了一种基于反应性的 RNA 分析 (RBRP) 方法,并将其应用于体内揭示一组 FDA 批准的小分子药物的转录组相互作用。我们表明,这些靶向蛋白质的药物普遍与人类转录组相互作用,并可能对 RNA 功能产生非预期的生物学影响。此外,我们表明许多脱靶相互作用发生在与蛋白质结合和结构变化相关的 RNA 位点,这使我们能够生成假设来推断 RNA 脱靶结合的生物学后果。结果表明,严格表征药物的转录组相互作用可能有助于评估靶标特异性并可能避免毒性和临床失败。剂量限制性毒性是治疗药物开发中经常遇到的问题,通常在临床试验中发现 1 。这既不利于人类健康的积极结果,也耗费大量的资金和人力。即使是已经批准的药物,剂量限制性毒性也会导致不良结果和上市后药物撤回 2 。这些药物毒性通常归因于脱靶与非目标细胞蛋白的结合 3 。鉴于 RNA 在人体生理学中具有广泛的生物调节作用,并且蛋白质靶向药物与已知 RNA 结合分子在结构上相似 4,5 (图 1a-c),我们假设许多 FDA 批准的蛋白质靶向小分子药物可以在体内与人类转录组(和 RNA-蛋白质界面)相互作用,并可能因此给患者带来严重的毒性。
延长化合物的暴露时间,同时限制脱靶毒性。在 I 期研究中,Rilzabrutinib 显示出 3.20 小时的快速消除半衰期 (t 1/2 ) 6。尽管清除速度很快,但 Rilzabrutinib 在 BTK 上的延长停留时间 (14 小时) 可确保持续的靶标抑制 7。在 ITK (43 分钟) 和 HER4 (3.75 小时) 上的较短停留时间意味着任何初始的脱靶结合都可以快速逆转。这种动力学选择性与快速消除相结合,有助于减少脱靶效应的持续时间和影响,从而提高药物的安全性。因此,Rilzabrutinib 的治疗窗口最大化。不良副作用的可能性最小化,耐受性提高,同时在较长时间内保持疗效。
CRISPR-Cas9 系统广泛用于靶向基因组工程。Cpf1 是 CRISPR 效应子之一,通过识别富含胸腺嘧啶的原间隔区相邻基序 (PAM) 序列来控制靶基因。Cpf1 对向导 RNA 中的错配的敏感性高于 Cas9;因此,脱靶序列识别和切割较低。但是,它可以容忍原间隔区中远离 PAM 序列 (TTTN 或 TTN) 的区域中的错配,并且当 Cpf1 活性因治疗目的而得到改善时,脱靶切割问题可能会变得更加成问题。在我们的研究中,我们研究了 Cpf1 的脱靶切割,并修改了 Cpf1 (cr)RNA 以解决脱靶切割问题。我们开发了一种 CRISPR-Cpf1,它可以通过用 DNA 部分替换 (cr)RNA 来改变碱基配对的能量势,从而以高度特异性和有效的方式诱导靶 DNA 序列中的突变。提出了一个模型来解释嵌合 (cr)RNA 引导的 CRISPR-Cpf1 和 SpCas9 切口酶如何在细胞内基因组中有效发挥作用。在我们的结果中,当使用嵌合 DNA-RNA 引导进行基因组编辑时,CRISPR-Cpf1 在细胞水平上诱导的脱靶突变较少。这项研究有可能用于治疗无法治愈的癌症
1。加拿大多伦多的瑞尔森大学化学与生物学系。2。加拿大多伦多大学多伦多大学计算机科学系3。 矢量研究所,加拿大安大略省多伦多,4。 Cyclica Inc.,加拿大安大略省多伦多,5。 分子医学计划,加拿大安大略省多伦多的病儿童研究所医院6. 加拿大多伦多多伦多大学生物化学系。 7。 Biofisika Institute(CSIC,UPV/EHU)和西班牙毕尔巴奥的巴斯克大学(UPV/EHU)生物化学与分子生物学系。 8。 加拿大多伦多大学医学生物物理学系9. Precision心脏病学实验室,拜耳美国有限责任公司,美国马萨诸塞州剑桥市10。 加拿大多伦多的瑞尔森大学分子科学研究生课程。 11。 phoenox Pharma,多伦多,安大略省,加拿大12。 加拿大多伦多多伦多大学药理学与毒理学系13。 基南生物医学研究中心,加拿大多伦多,圣迈克尔医院。 14。 生物医学工程,科学技术研究所(IBEST),瑞尔森大学与加拿大安大略省多伦多的圣迈克尔医院之间的合作伙伴关系。 15。 加拿大多伦多的瑞尔森大学物理系。 16。 加拿大多伦多多伦多大学外科系。 17。 免疫学系,多伦多,安大略省,加拿大,18。 彼得·穆克心脏中心,加拿大安大略省多伦多大学健康中心19.加拿大多伦多大学多伦多大学计算机科学系3。矢量研究所,加拿大安大略省多伦多,4。Cyclica Inc.,加拿大安大略省多伦多,5。 分子医学计划,加拿大安大略省多伦多的病儿童研究所医院6. 加拿大多伦多多伦多大学生物化学系。 7。 Biofisika Institute(CSIC,UPV/EHU)和西班牙毕尔巴奥的巴斯克大学(UPV/EHU)生物化学与分子生物学系。 8。 加拿大多伦多大学医学生物物理学系9. Precision心脏病学实验室,拜耳美国有限责任公司,美国马萨诸塞州剑桥市10。 加拿大多伦多的瑞尔森大学分子科学研究生课程。 11。 phoenox Pharma,多伦多,安大略省,加拿大12。 加拿大多伦多多伦多大学药理学与毒理学系13。 基南生物医学研究中心,加拿大多伦多,圣迈克尔医院。 14。 生物医学工程,科学技术研究所(IBEST),瑞尔森大学与加拿大安大略省多伦多的圣迈克尔医院之间的合作伙伴关系。 15。 加拿大多伦多的瑞尔森大学物理系。 16。 加拿大多伦多多伦多大学外科系。 17。 免疫学系,多伦多,安大略省,加拿大,18。 彼得·穆克心脏中心,加拿大安大略省多伦多大学健康中心19.Cyclica Inc.,加拿大安大略省多伦多,5。分子医学计划,加拿大安大略省多伦多的病儿童研究所医院6.加拿大多伦多多伦多大学生物化学系。 7。 Biofisika Institute(CSIC,UPV/EHU)和西班牙毕尔巴奥的巴斯克大学(UPV/EHU)生物化学与分子生物学系。 8。 加拿大多伦多大学医学生物物理学系9. Precision心脏病学实验室,拜耳美国有限责任公司,美国马萨诸塞州剑桥市10。 加拿大多伦多的瑞尔森大学分子科学研究生课程。 11。 phoenox Pharma,多伦多,安大略省,加拿大12。 加拿大多伦多多伦多大学药理学与毒理学系13。 基南生物医学研究中心,加拿大多伦多,圣迈克尔医院。 14。 生物医学工程,科学技术研究所(IBEST),瑞尔森大学与加拿大安大略省多伦多的圣迈克尔医院之间的合作伙伴关系。 15。 加拿大多伦多的瑞尔森大学物理系。 16。 加拿大多伦多多伦多大学外科系。 17。 免疫学系,多伦多,安大略省,加拿大,18。 彼得·穆克心脏中心,加拿大安大略省多伦多大学健康中心19.加拿大多伦多多伦多大学生物化学系。7。Biofisika Institute(CSIC,UPV/EHU)和西班牙毕尔巴奥的巴斯克大学(UPV/EHU)生物化学与分子生物学系。8。加拿大多伦多大学医学生物物理学系9.Precision心脏病学实验室,拜耳美国有限责任公司,美国马萨诸塞州剑桥市10。加拿大多伦多的瑞尔森大学分子科学研究生课程。11。phoenox Pharma,多伦多,安大略省,加拿大12。加拿大多伦多多伦多大学药理学与毒理学系13。基南生物医学研究中心,加拿大多伦多,圣迈克尔医院。 14。 生物医学工程,科学技术研究所(IBEST),瑞尔森大学与加拿大安大略省多伦多的圣迈克尔医院之间的合作伙伴关系。 15。 加拿大多伦多的瑞尔森大学物理系。 16。 加拿大多伦多多伦多大学外科系。 17。 免疫学系,多伦多,安大略省,加拿大,18。 彼得·穆克心脏中心,加拿大安大略省多伦多大学健康中心19.基南生物医学研究中心,加拿大多伦多,圣迈克尔医院。14。生物医学工程,科学技术研究所(IBEST),瑞尔森大学与加拿大安大略省多伦多的圣迈克尔医院之间的合作伙伴关系。15。加拿大多伦多的瑞尔森大学物理系。16。加拿大多伦多多伦多大学外科系。 17。 免疫学系,多伦多,安大略省,加拿大,18。 彼得·穆克心脏中心,加拿大安大略省多伦多大学健康中心19.加拿大多伦多多伦多大学外科系。17。免疫学系,多伦多,安大略省,加拿大,18。彼得·穆克心脏中心,加拿大安大略省多伦多大学健康中心19.加拿大多伦多大学的实验室医学与病理学系
图 1. CTS HiFi Cas9 蛋白 (CTS HF Cas9) 显著降低了原代 T 细胞中脱靶效应的发生率。将三种 Cas9 蛋白与三种 Invitrogen ™ TrueGuide ™ 合成 sgRNA 混合,形成九种复合物(RNP:50 pmol sgRNA、38 pmol Cas9、50 pmol dsTag,用于 Invitrogen ™ Neon ™ 转染系统中的 1.5 x 10⁶ T 细胞(100 µL)*)。使用 Neon 转染系统将每个 RNP 复合物递送到原代 T 细胞中。从 NGS TEG-seq 检测(点图)中获得每个 gRNA 的在靶和脱靶效应读数。每个脱靶/在靶比(蓝点)是根据单个脱靶的每百万读数 (RPM) 除以相应在靶的 RPM 计算得出的。红点代表相应的在靶,并标准化为 100%。 x 轴是任意的。CTS WT Cas9 是 CTS TrueCut Cas9 蛋白。
描述 设计用于 CRISPR/Cas9 基因组编辑的指导序列,并提供与指导效率相关的序列特征信息。序列特征包括用户选择的基因组中注释的脱靶预测和基于 Doench 等人 (2016) < doi:10.1038/nbt.3437 > 中描述的模型的预测效率分数。用户可以导入其他基因组和基因组注释文件,以便在搜索和注释脱靶命中时使用。所有指导序列和脱靶数据都可以通过带有 sgRNA_Design() 的“R”控制台或带有 crispRdesignRUI() 的“crispRdesignR”用户界面生成。CRISPR(成簇的规律间隔的短回文重复序列)和相关蛋白质 Cas9 是指用于基因组编辑的技术。