土壤是一个复杂而动态的生物系统,而且直到 2003 年,仍然很难确定土壤中微生物群落的组成。我们在确定微生物介导的反应方面也受到限制,因为目前用于确定整个代谢过程(如呼吸)或特定酶活性(如脲酶、蛋白酶和磷酸单酯酶活性)的总体速率的检测方法无法识别直接参与测量过程的微生物物种。微生物多样性与土壤功能之间的联系所带来的核心问题是了解遗传多样性与群落结构之间的关系以及群落结构与功能之间的关系。更好地了解微生物多样性与土壤功能之间的关系不仅需要使用更准确的检测方法对从土壤中提取的 DNA 和 RNA 进行分类和功能表征,还需要使用高分辨率技术来检测土壤基质中非活性和活性微生物细胞。土壤似乎具有功能冗余的特点;例如,微生物多样性与有机物分解之间不存在任何关系。一般来说,任何物种群的减少对土壤的整体过程影响不大,因为其他微生物可以承担其功能。确定土壤中微生物群落的组成对于更好地量化营养转化来说并不是必要的。基于库中系统的划分和连接这些库的通量的测量的整体方法是最有效的。通过熏蒸技术测定微生物 C、N、P 和 S 含量可以更好地量化土壤中的营养动态。然而,进一步的进展需要确定新的库,例如活性微生物生物量,也需要使用分子技术。最近,研究人员通过密度梯度离心分离了 13 C 和 12 C DNA,它们都是从用 13 C 源处理的土壤中提取的。这种技术应该允许我们通过将标记 DNA 和总 DNA 之间的比率乘以土壤中微生物生物量 C 含量来计算活性微生物 C 库。此外,13 C-DNA的分类学和功能表征使我们能够更准确地了解土壤中添加的C底物对微生物群落组成的变化的影响。
H2S + K/A 可能的生物 变形杆菌、爱德华氏菌、沙门氏菌、弗氏柠檬酸杆菌 你对这些知识了解多少? 2-4 进行并解释吲哚、MR-VP、柠檬酸盐、尿素酶、运动性和蔗糖发酵试验。陈述这些试验的目的和原理,并根据结果识别肠杆菌科的成员。描述细菌和病毒的繁殖和增殖方式。利用无菌技术安全处理微生物。应用各种实验室技术识别微生物的类型。识别主要微生物群的结构特征,比较原核细胞和真核细胞,对比各种微生物群的生理和生物化学。培养基:蔗糖发酵液、胰蛋白胨肉汤、MR-VP 肉汤、柠檬酸盐斜面、尿素斜面、运动琼脂。设备:接种线和接种环、原种培养物(产气克雷伯菌、大肠杆菌、奇异变形杆菌、肺炎克雷伯菌)。试剂:Kovac 试剂、甲基红、Barritt 试剂 A 和 B。肠杆菌科的革兰氏阴性杆菌在临床微生物实验室中很常见。这些细菌通常被称为“肠道菌”,是正常肠道微生物群的一部分。由于它们具有相似的革兰氏染色结果和细胞形态,因此需要进行生化测试以进行识别。编码在细菌基因组中的生化酶为每种菌种形成独特的“指纹”。从历史上看,IMViC 测试用于识别肠道菌。该首字母缩略词代表吲哚、甲基红、Voges-Proskauer 和柠檬酸盐测试。大肠杆菌曾被用作食物和水源中粪便污染的指标。虽然肠杆菌与大肠杆菌相似,但它在土壤和草丛中广泛存在,因此它是一种不太可靠的指标。大肠杆菌、克雷伯氏菌、肠杆菌和变形杆菌通常是正常肠道微生物群的一部分,但在不同情况下会导致疾病。真正的肠道病原体包括沙门氏菌,它因“食物中毒”而导致伤寒和胃肠炎,以及志贺氏菌,它因“食物中毒”而导致细菌性痢疾。市面上有 Enterotube 和 API20E 等商业试剂盒系统可用于识别肠杆菌科。此练习需要微型细菌分析练习小组工作。小组中的每个人都将使用一种彩色点培养物。有四种蔗糖发酵液测试可供选择。1. 获取蔗糖发酵液,其中含有糖和 pH 指示剂。2. 使用便签创建标签,上面写有您的姓名、指定的生物和培养基类型。 3. 从琼脂平板上取少量细菌,加入到每个发酵管中。 4. 培养发酵管直至下一次实验。培养后,观察每个蔗糖发酵管的外观: - 黄色发酵液:阳性(发酵蔗糖) - 红色发酵液:阴性(不发酵蔗糖) 将发酵管丢弃在实验室后面的废弃架中。 尿素酶测试 获取尿素琼脂斜面并贴上您的姓名、指定生物和培养基类型标签。 使用无菌环将细菌添加到整个斜面中。 孵育直到下一次实验课。 孵育后,观察尿素培养基的颜色变化: - 热粉色肉汤:阳性(产生尿素酶) - 淡鲑鱼肉汤:阴性(不产生尿素酶) 将尿素斜面丢弃在实验室后面的废弃架中。 吲哚测试 获取胰蛋白胨肉汤并贴上您的姓名、指定生物和培养基类型标签。 使用无菌环向每种培养物中添加少量细菌。 孵育直到下一次实验课。孵育后,向每种培养物中加入 10 滴 Kovac 试剂: - 红色环:阳性(产生吲哚) - 无红色环:阴性(不产生吲哚) 将胰蛋白胨管丢弃在通风橱中。MR-VPP 测试 获得一个 MRVP 肉汤管并贴上标签,写上您的名称、指定生物和培养基类型。使用无菌环向每种培养物中添加细菌。孵育至下一次实验课。孵育后,观察 MRVP 肉汤的外观: - 红色环:阳性(通过混合酸途径发酵葡萄糖) - 无红色环:阴性(不通过混合酸途径发酵葡萄糖) 1. 首先准备用于细菌分析的测试培养基。这涉及使用无菌接种环获取少量细菌并接种 MR-VP 肉汤。 2. 将接种管孵育至下一次实验课,之后将进行几项测试以分析细菌特性。 3. **MR 测试**:培养后,使用移液管将接种的肉汤分离到标有“MR”和“VP”的两个管中。将甲基红试剂添加到“MR”管中,并记录任何反应或结果。琼脂样品被丢弃在实验室的废弃架上。测试结果表明:大肠杆菌和奇异变形杆菌的运动性呈阳性,而肺炎克雷伯氏菌和沙门氏菌呈阴性。由于缺乏供应,未对志贺氏菌进行测试。大多数菌株的蔗糖发酵呈阴性,但奇异变形杆菌除外,其发酵呈阳性。不同细菌的脲酶活性各不相同,奇异变形杆菌呈阳性。不同物种的吲哚生成也不同,肺炎克雷伯氏菌和大肠杆菌的测试结果呈阳性。在 1940 年代的研究中,Baruj Benacerraf 博士对免疫学做出了重大贡献。他发现了主要组织相容性复合体基因,这些基因对于区分自身和非自身至关重要。他的工作还阐明了巨噬细胞的吞噬活性并描述了 IgG 亚类的功能。Fc 受体由 Benacerraf 发现,同时还发现了 T 细胞和 B 细胞识别抗原并合作产生抗体反应的独特方式。尿素酶测试 获取尿素琼脂斜面并贴上您的名称、指定生物和培养基类型标签。用无菌环将细菌添加到整个斜面中。孵育至下次实验课。孵育后,观察尿素培养基的颜色变化: - 热粉色肉汤:阳性(产生尿素酶) - 淡鲑鱼色肉汤:阴性(不产生尿素酶) 将尿素斜面丢弃在实验室后面的废弃架中。吲哚测试 获取胰蛋白胨肉汤并贴上您的名称、指定生物和培养基类型标签。用无菌环向每种培养物中添加少量细菌。孵育至下次实验课。孵育后,向每种培养物中加入 10 滴 Kovac 试剂: - 红色环:阳性(产生吲哚) - 无红色环:阴性(不产生吲哚) 将胰蛋白胨管丢弃在通风橱中。 MR-VPP 测试 准备一个 MRVP 肉汤管,并在上面贴上您的姓名、指定生物和培养基类型标签。使用无菌环将细菌添加到每个培养物中。孵育至下一次实验。孵育后,观察 MRVP 肉汤的外观: - 红色环:阳性(通过混合酸途径发酵葡萄糖) - 无红色环:阴性(不通过混合酸途径发酵葡萄糖) 1. 首先准备用于细菌分析的测试培养基。这涉及使用无菌接种环获取少量细菌并接种 MR-VP 肉汤。 2. 孵育接种管直至下一次实验,之后将进行几项测试以分析细菌特性。 3. **MR 测试**:孵育后,使用转移吸量管将接种的肉汤分成两个标记为“MR”和“VP”的管。将甲基红试剂添加到“MR”管中,并记录任何反应或结果。琼脂样本被丢弃在实验室的废弃架上。检测结果表明:大肠杆菌和奇异变形杆菌运动性呈阳性,而肺炎克雷伯菌和沙门氏菌呈阴性。由于缺乏志贺氏菌,未进行检测。大多数菌株的蔗糖发酵呈阴性,但奇异变形杆菌除外,其发酵呈阳性。不同细菌的脲酶活性各不相同,奇异变形杆菌呈阳性。不同物种的吲哚生成也不同,肺炎克雷伯菌和大肠杆菌的检测呈阳性。在 1940 年代的研究中,Baruj Benacerraf 博士对免疫学做出了重大贡献。他确定了主要组织相容性复合体基因,该基因对于区分自身和非自身至关重要。他的工作还阐明了巨噬细胞的吞噬活性并描述了 IgG 亚类的功能。 Fc 受体以及 T 细胞和 B 细胞识别抗原和协作产生抗体反应的独特方式都是由 Benacerraf 发现的。尿素酶测试 获取尿素琼脂斜面并贴上您的名称、指定生物和培养基类型标签。用无菌环将细菌添加到整个斜面中。孵育至下次实验课。孵育后,观察尿素培养基的颜色变化: - 热粉色肉汤:阳性(产生尿素酶) - 淡鲑鱼色肉汤:阴性(不产生尿素酶) 将尿素斜面丢弃在实验室后面的废弃架中。吲哚测试 获取胰蛋白胨肉汤并贴上您的名称、指定生物和培养基类型标签。用无菌环向每种培养物中添加少量细菌。孵育至下次实验课。孵育后,向每种培养物中加入 10 滴 Kovac 试剂: - 红色环:阳性(产生吲哚) - 无红色环:阴性(不产生吲哚) 将胰蛋白胨管丢弃在通风橱中。 MR-VPP 测试 准备一个 MRVP 肉汤管,并在上面贴上您的姓名、指定生物和培养基类型标签。使用无菌环将细菌添加到每个培养物中。孵育至下一次实验。孵育后,观察 MRVP 肉汤的外观: - 红色环:阳性(通过混合酸途径发酵葡萄糖) - 无红色环:阴性(不通过混合酸途径发酵葡萄糖) 1. 首先准备用于细菌分析的测试培养基。这涉及使用无菌接种环获取少量细菌并接种 MR-VP 肉汤。 2. 孵育接种管直至下一次实验,之后将进行几项测试以分析细菌特性。 3. **MR 测试**:孵育后,使用转移吸量管将接种的肉汤分成两个标记为“MR”和“VP”的管。将甲基红试剂添加到“MR”管中,并记录任何反应或结果。琼脂样本被丢弃在实验室的废弃架上。检测结果表明:大肠杆菌和奇异变形杆菌运动性呈阳性,而肺炎克雷伯菌和沙门氏菌呈阴性。由于缺乏志贺氏菌,未进行检测。大多数菌株的蔗糖发酵呈阴性,但奇异变形杆菌除外,其发酵呈阳性。不同细菌的脲酶活性各不相同,奇异变形杆菌呈阳性。不同物种的吲哚生成也不同,肺炎克雷伯菌和大肠杆菌的检测呈阳性。在 1940 年代的研究中,Baruj Benacerraf 博士对免疫学做出了重大贡献。他确定了主要组织相容性复合体基因,该基因对于区分自身和非自身至关重要。他的工作还阐明了巨噬细胞的吞噬活性并描述了 IgG 亚类的功能。 Fc 受体以及 T 细胞和 B 细胞识别抗原和协作产生抗体反应的独特方式都是由 Benacerraf 发现的。观察尿素培养基的颜色变化: - 热粉色肉汤:阳性(产生尿素酶) - 淡鲑鱼肉汤:阴性(不产生尿素酶) 将尿素斜面丢弃在实验室后面的废弃架中。吲哚测试 获取胰蛋白胨肉汤并贴上您的名称、指定生物和培养基类型标签。使用无菌环向每种培养物中添加少量细菌。孵育至下一次实验课。孵育后,向每种培养物中添加 10 滴 Kovac 试剂: - 红环:阳性(产生吲哚) - 无红环:阴性(不产生吲哚) 将胰蛋白胨管丢弃在通风橱中。MR-VPP 测试 获取 MRVP 肉汤管并贴上您的名称、指定生物和培养基类型标签。使用无菌环向每种培养物中添加细菌。孵育至下一次实验课。培养后,观察 MRVP 肉汤的外观: - 红环:阳性(通过混合酸途径发酵葡萄糖) - 无红环:阴性(不通过混合酸途径发酵葡萄糖) 1. 首先准备用于细菌分析的测试培养基。这涉及使用无菌接种环获取少量细菌并接种 MR-VP 肉汤。 2. 将接种管培养至下一个实验环节,之后将进行几项测试以分析细菌特性。 3. **MR 测试**:培养后,使用移液器将接种的肉汤分离到标有“MR”和“VP”的两个管中。将甲基红试剂添加到“MR”管中,并记录任何反应或结果。琼脂样品被丢弃在实验室的废弃架中。测试结果表明:大肠杆菌和奇异变形杆菌具有阳性运动能力,而肺炎克雷伯菌和沙门氏菌则呈阴性。由于缺乏供应,未对志贺氏菌进行测试。大多数菌株的蔗糖发酵呈阴性,但奇异变形杆菌除外,其发酵呈阳性。不同细菌的尿素酶活性各不相同,奇异变形杆菌呈阳性。不同物种的吲哚生成也不同,肺炎克雷伯菌和大肠杆菌的检测结果呈阳性。在 1940 年代的研究中,Baruj Benacerraf 博士对免疫学做出了重大贡献。他确定了主要组织相容性复合体基因,该基因对于区分自身和非自身至关重要。他的工作还阐明了巨噬细胞的吞噬活性并描述了 IgG 亚类的功能。Benacerraf 发现了 Fc 受体,以及 T 细胞和 B 细胞识别抗原并协作产生抗体反应的独特方式。观察尿素培养基的颜色变化: - 热粉色肉汤:阳性(产生尿素酶) - 淡鲑鱼肉汤:阴性(不产生尿素酶) 将尿素斜面丢弃在实验室后面的废弃架中。吲哚测试 获取胰蛋白胨肉汤并贴上您的名称、指定生物和培养基类型标签。使用无菌环向每种培养物中添加少量细菌。孵育至下一次实验课。孵育后,向每种培养物中添加 10 滴 Kovac 试剂: - 红环:阳性(产生吲哚) - 无红环:阴性(不产生吲哚) 将胰蛋白胨管丢弃在通风橱中。MR-VPP 测试 获取 MRVP 肉汤管并贴上您的名称、指定生物和培养基类型标签。使用无菌环向每种培养物中添加细菌。孵育至下一次实验课。培养后,观察 MRVP 肉汤的外观: - 红环:阳性(通过混合酸途径发酵葡萄糖) - 无红环:阴性(不通过混合酸途径发酵葡萄糖) 1. 首先准备用于细菌分析的测试培养基。这涉及使用无菌接种环获取少量细菌并接种 MR-VP 肉汤。 2. 将接种管培养至下一个实验环节,之后将进行几项测试以分析细菌特性。 3. **MR 测试**:培养后,使用移液器将接种的肉汤分离到标有“MR”和“VP”的两个管中。将甲基红试剂添加到“MR”管中,并记录任何反应或结果。琼脂样品被丢弃在实验室的废弃架中。测试结果表明:大肠杆菌和奇异变形杆菌具有阳性运动能力,而肺炎克雷伯菌和沙门氏菌则呈阴性。由于缺乏供应,未对志贺氏菌进行测试。大多数菌株的蔗糖发酵呈阴性,但奇异变形杆菌除外,其发酵呈阳性。不同细菌的尿素酶活性各不相同,奇异变形杆菌呈阳性。不同物种的吲哚生成也不同,肺炎克雷伯菌和大肠杆菌的检测结果呈阳性。在 1940 年代的研究中,Baruj Benacerraf 博士对免疫学做出了重大贡献。他确定了主要组织相容性复合体基因,该基因对于区分自身和非自身至关重要。他的工作还阐明了巨噬细胞的吞噬活性并描述了 IgG 亚类的功能。Benacerraf 发现了 Fc 受体,以及 T 细胞和 B 细胞识别抗原并协作产生抗体反应的独特方式。向每种培养物中加入 10 滴 Kovac 试剂: - 红色环:阳性(产生吲哚) - 无红色环:阴性(不产生吲哚) 将胰蛋白胨管丢弃在通风橱中。MR-VPP 测试 获得一个 MRVP 肉汤管并贴上标签,写上您的名称、指定生物和培养基类型。使用无菌环向每种培养物中添加细菌。孵育至下一次实验课。孵育后,观察 MRVP 肉汤的外观: - 红色环:阳性(通过混合酸途径发酵葡萄糖) - 无红色环:阴性(不通过混合酸途径发酵葡萄糖) 1. 首先准备用于细菌分析的测试培养基。这涉及使用无菌接种环获取少量细菌并接种 MR-VP 肉汤。 2. 将接种管孵育至下一次实验课,之后将进行几项测试以分析细菌特性。 3. **MR 测试**:培养后,使用移液管将接种的肉汤分离到标有“MR”和“VP”的两个管中。将甲基红试剂添加到“MR”管中,并记录任何反应或结果。琼脂样品被丢弃在实验室的废弃架上。测试结果表明:大肠杆菌和奇异变形杆菌的运动性呈阳性,而肺炎克雷伯氏菌和沙门氏菌呈阴性。由于缺乏供应,未对志贺氏菌进行测试。大多数菌株的蔗糖发酵呈阴性,但奇异变形杆菌除外,其发酵呈阳性。不同细菌的脲酶活性各不相同,奇异变形杆菌呈阳性。不同物种的吲哚生成也不同,肺炎克雷伯氏菌和大肠杆菌的测试结果呈阳性。在 1940 年代的研究中,Baruj Benacerraf 博士对免疫学做出了重大贡献。他发现了主要组织相容性复合体基因,这些基因对于区分自身和非自身至关重要。他的工作还阐明了巨噬细胞的吞噬活性并描述了 IgG 亚类的功能。Fc 受体由 Benacerraf 发现,同时还发现了 T 细胞和 B 细胞识别抗原并合作产生抗体反应的独特方式。向每种培养物中加入 10 滴 Kovac 试剂: - 红色环:阳性(产生吲哚) - 无红色环:阴性(不产生吲哚) 将胰蛋白胨管丢弃在通风橱中。MR-VPP 测试 获得一个 MRVP 肉汤管并贴上标签,写上您的名称、指定生物和培养基类型。使用无菌环向每种培养物中添加细菌。孵育至下一次实验课。孵育后,观察 MRVP 肉汤的外观: - 红色环:阳性(通过混合酸途径发酵葡萄糖) - 无红色环:阴性(不通过混合酸途径发酵葡萄糖) 1. 首先准备用于细菌分析的测试培养基。这涉及使用无菌接种环获取少量细菌并接种 MR-VP 肉汤。 2. 将接种管孵育至下一次实验课,之后将进行几项测试以分析细菌特性。 3. **MR 测试**:培养后,使用移液管将接种的肉汤分离到标有“MR”和“VP”的两个管中。将甲基红试剂添加到“MR”管中,并记录任何反应或结果。琼脂样品被丢弃在实验室的废弃架上。测试结果表明:大肠杆菌和奇异变形杆菌的运动性呈阳性,而肺炎克雷伯氏菌和沙门氏菌呈阴性。由于缺乏供应,未对志贺氏菌进行测试。大多数菌株的蔗糖发酵呈阴性,但奇异变形杆菌除外,其发酵呈阳性。不同细菌的脲酶活性各不相同,奇异变形杆菌呈阳性。不同物种的吲哚生成也不同,肺炎克雷伯氏菌和大肠杆菌的测试结果呈阳性。在 1940 年代的研究中,Baruj Benacerraf 博士对免疫学做出了重大贡献。他发现了主要组织相容性复合体基因,这些基因对于区分自身和非自身至关重要。他的工作还阐明了巨噬细胞的吞噬活性并描述了 IgG 亚类的功能。Fc 受体由 Benacerraf 发现,同时还发现了 T 细胞和 B 细胞识别抗原并合作产生抗体反应的独特方式。之后将进行几项测试以分析细菌特性。 3. **MR 测试**:培养后,使用移液器将接种的肉汤分离到两个标记为“MR”和“VP”的管中。将甲基红试剂添加到“MR”管中,并记录任何反应或结果。琼脂样品被丢弃在实验室的废弃架上。测试结果表明:大肠杆菌和奇异变形杆菌的运动性呈阳性,而肺炎克雷伯氏菌和沙门氏菌呈阴性。由于缺乏供应,没有测试志贺氏菌。大多数菌株的蔗糖发酵呈阴性,但奇异变形杆菌除外,其发酵呈阳性。不同细菌的脲酶活性各不相同,奇异变形杆菌呈阳性。不同物种的吲哚生成也不同,肺炎克雷伯氏菌和大肠杆菌的检测结果呈阳性。在 1940 年代的研究中,Baruj Benacerraf 博士对免疫学做出了重大贡献。他发现了主要组织相容性复合体基因,这些基因对于区分自身和非自身至关重要。他的工作还阐明了巨噬细胞的吞噬活性并描述了 IgG 亚类的功能。Fc 受体由 Benacerraf 发现,同时还发现了 T 细胞和 B 细胞识别抗原并合作产生抗体反应的独特方式。之后将进行几项测试以分析细菌特性。 3. **MR 测试**:培养后,使用移液器将接种的肉汤分离到两个标记为“MR”和“VP”的管中。将甲基红试剂添加到“MR”管中,并记录任何反应或结果。琼脂样品被丢弃在实验室的废弃架上。测试结果表明:大肠杆菌和奇异变形杆菌的运动性呈阳性,而肺炎克雷伯氏菌和沙门氏菌呈阴性。由于缺乏供应,没有测试志贺氏菌。大多数菌株的蔗糖发酵呈阴性,但奇异变形杆菌除外,其发酵呈阳性。不同细菌的脲酶活性各不相同,奇异变形杆菌呈阳性。不同物种的吲哚生成也不同,肺炎克雷伯氏菌和大肠杆菌的检测结果呈阳性。在 1940 年代的研究中,Baruj Benacerraf 博士对免疫学做出了重大贡献。他发现了主要组织相容性复合体基因,这些基因对于区分自身和非自身至关重要。他的工作还阐明了巨噬细胞的吞噬活性并描述了 IgG 亚类的功能。Fc 受体由 Benacerraf 发现,同时还发现了 T 细胞和 B 细胞识别抗原并合作产生抗体反应的独特方式。
摘要。Fitri L,Aulia TB,Fauzi A,Kamil GA。 2023。在印度尼西亚班达·亚齐(Banda Aceh)的垃圾填埋场中表征和筛选尿液酶活性。生物多样性24:910-915。尿素细菌能够产生碳酸钙沉淀酶尿素酶。尿液细菌将脲酶降解为氨和二氧化碳。尿液细菌可以应用于生物饲养技术和混凝土混合物中。这项研究旨在隔离和表征尿液分离株,然后确定来自印度尼西亚班达·亚西(Banda Aceh)的甘旺贾瓦(Gampong Jawa)的垃圾填埋土壤中尿液分离株的碳酸钙沉淀潜力。这项研究成功地从Gampong Jawa垃圾填埋场中成功地分离了24个细菌分离株,并且确认了其中十种这些分离株可以积极产生尿素酶。用代码BTPA-3,BTPA-6,BTPA-7,BTPA-8,BTPA-8,BTPA-9,BTPA-9,BTPA-15,BTPA-15,BTPA-20,BTPA-20,BTPA-22,BTPA-22,BTPA-23和BTPA-24隔离 。分别为1.32、1.54和1.70 g。 BTPA-3,BTPA-6,BTPA-7,BTPA-8,BTPA-9,BTPA-9,BTPA-23和BTPA-24被确定为芽孢杆菌属的成员; BTPA-20是葡萄球菌属的成员。 BTPA-15和BTPA-22是Solibacillus属的成员。 该研究数据是有关甘蓬爪哇垃圾填埋场细菌潜力的新信息,该信息可以确定碳酸盐沉淀。 该研究还表明,可以进一步改善并利用在混凝土混合物中进行的尿液分离株。。分别为1.32、1.54和1.70 g。 BTPA-3,BTPA-6,BTPA-7,BTPA-8,BTPA-9,BTPA-9,BTPA-23和BTPA-24被确定为芽孢杆菌属的成员; BTPA-20是葡萄球菌属的成员。 BTPA-15和BTPA-22是Solibacillus属的成员。 该研究数据是有关甘蓬爪哇垃圾填埋场细菌潜力的新信息,该信息可以确定碳酸盐沉淀。 该研究还表明,可以进一步改善并利用在混凝土混合物中进行的尿液分离株。。分别为1.32、1.54和1.70 g。 BTPA-3,BTPA-6,BTPA-7,BTPA-8,BTPA-9,BTPA-9,BTPA-23和BTPA-24被确定为芽孢杆菌属的成员; BTPA-20是葡萄球菌属的成员。 BTPA-15和BTPA-22是Solibacillus属的成员。 该研究数据是有关甘蓬爪哇垃圾填埋场细菌潜力的新信息,该信息可以确定碳酸盐沉淀。 该研究还表明,可以进一步改善并利用在混凝土混合物中进行的尿液分离株。。分别为1.32、1.54和1.70 g。 BTPA-3,BTPA-6,BTPA-7,BTPA-8,BTPA-9,BTPA-9,BTPA-23和BTPA-24被确定为芽孢杆菌属的成员; BTPA-20是葡萄球菌属的成员。 BTPA-15和BTPA-22是Solibacillus属的成员。 该研究数据是有关甘蓬爪哇垃圾填埋场细菌潜力的新信息,该信息可以确定碳酸盐沉淀。 该研究还表明,可以进一步改善并利用在混凝土混合物中进行的尿液分离株。。分别为1.32、1.54和1.70 g。BTPA-3,BTPA-6,BTPA-7,BTPA-8,BTPA-9,BTPA-9,BTPA-23和BTPA-24被确定为芽孢杆菌属的成员; BTPA-20是葡萄球菌属的成员。 BTPA-15和BTPA-22是Solibacillus属的成员。该研究数据是有关甘蓬爪哇垃圾填埋场细菌潜力的新信息,该信息可以确定碳酸盐沉淀。该研究还表明,可以进一步改善并利用在混凝土混合物中进行的尿液分离株。