摘要本研究研究了香蕉皮提取物作为A36钢的腐蚀抑制剂的有效性,以满足基础设施维持中可持续解决方案的需求。受控的腐蚀暴露测试是在用香蕉皮提取物处理的钢板上进行的,以不同的浓度(0%,5%,10%和15%)进行。表面特征。在整个测试中监测pH和电导率。使用重量表表征确定腐蚀速率。使用通用测试机进行了机械测试,包括应力 - 应变行为分析。结果表明,香蕉皮提取物可显着增强A36钢的耐腐蚀性。较高的抑制剂浓度,尤其是在15%的情况下,导致了机械性能的改善,例如最终应力,屈服应力,弹性,弹性和韧性的模量。SEM分析揭示了保护性化学吸附层的形成,而比色法表明随着抑制剂浓度的增加,可以更好地保存钢的表面特征。香蕉皮提取物是对民用基础设施腐蚀保护的有前途且可持续的替代方法。抑制剂的有效性随较高的浓度增加,从而防止腐蚀并增强钢的机械完整性。农业废物作为功能腐蚀抑制剂的利用促进了循环经济原则。通过重新利用香蕉皮,该研究有助于可持续的工程实践,
抽象糖尿病通常称为糖尿病,是一种慢性代谢疾病,其特征是血糖升高(葡萄糖)水平。此摘要探讨了不同类型的糖尿病,它们的原因和潜在并发症。它还高点,照亮了全球疾病负担和管理策略的重要性。有两种主要类型的糖尿病类型:类型1和类型2。1型糖尿病是一种自身免疫性疾病,人体会在胰腺中攻击产生胰岛素的细胞,导致舒张缺乏症。2型糖尿病,最普遍的形式,是由胰岛素抵抗或胰岛素分泌受损受损的。妊娠糖尿病是一种临时形式,在怀孕期间发展。糖尿病的主要原因是遗传和环境因素的结合。虽然遗传学发挥作用,但生活方式的选择,例如身体不活跃和不健康饮食,显着促进了2型糖尿病的发展。不受控制的二 - 可能导致各种影响多器官系统的并发症。这些患有心血管疾病,神经病(神经损伤),肾病(肾脏疾病),视网膜病变(眼病)和足部溃疡,可以导致截肢。糖尿病是一个全球健康问题,患病率迅速增长。犯罪负担需要有效的预防和管理策略。这些包括生活方式的修改,例如保持健康的体重和常规体育锻炼,以及适当的药物治疗方案和患者锻炼。此摘要提供了糖尿病的简洁概述,突出了其类型,原因,潜在的并发症以及应对这一全球健康挑战的重要性。
摘要Semarang City面临着重大的环境挑战,土地沉降是一个关键问题,它加剧了洪水的淹没并加剧了洪水破坏。随着城市地区的扩大和气候变化的影响变得更加明显,理解和减轻洪水风险对于可持续的城市发展和灾难管理至关重要。因此,本研究旨在评估使用机器学习来改善洪水管理的土地沉降引起的洪水风险。使用五种不同的机器学习模型(MLMS)来评估洪水风险,其中包括决策树(DT),K-Nearest邻居(KNN),逻辑回归(LR),支持向量机(SVM)和随机森林(RF)。此外,还使用了14个不同的指数和2884个样本点来训练和测试模型,并通过高参数优化确保了比较中的公平性。为了解决样本数据集中的不确定性,使用洪水点来验证洪水风险分区图的合理性。该研究调查了不同洪水风险水平的驱动因素,重点是洪水区域,以确定最高风险地区的洪水风险机制。结果表明,KNN表现最好,并提供了模型中最合理的洪水风险价值。同时,使用KNN模型的平均得分降低,将曲线数(CN),距离河流距离(Dtriver)和建筑物密度(BD)确定为洪水风险的前三个重要因素。最后,这项研究扩大了机器学习在洪水风险评估中的应用,并加深了对洪水风险潜在机制的理解,并提供了对更好的洪水风险管理的看法。
沿海地区碳钢腐蚀的成本很高,从而极大地影响了这些地方的经济。 div>涂料专门在这些条件下提供了良好的钢制保护,为此,新聚合物的持续发展是基本的。 div>在设计抗腐蚀涂料的设计中,已经使用了各种无机添加剂(其中一些具有潜在环境损害的金属)和有机物作为聚合物。 div>据报道,多多素氧化物,赤二酸的共聚物,半乙烯基 - 吡咯酮和聚二烯蛋白的共聚物是抗腐败涂料的成分。 div>这项工作的目的是获得一个电导性聚合物,该聚合物增强了炼金术涂层的保护作用。 div>关键词:抗腐蚀绘画,碳钢腐蚀,电导性聚合物,腐蚀抑制剂。 div>
印刷电路板的常见电气镍浴通常在镍沉积物中按重量掺入≤10%的磷。镍沉积结构的半球结节看起来像肥皂气泡。使用电镍沉积物,R/D比很关键,并确定了边界腐蚀的尖尖应力和倾向。 电动力(EMF)分析表明,镍比钯的移位较容易移位约三倍。 如果孔位于钯层中,则黄金将优先与下面的镍交换,从而在钯尼古尔互面部引起镍腐蚀。 腐蚀有三种主要类型的带有enepig沉积物:灾难性的地平线,结节坑和边界坑。 镍缝腐蚀是一种特定的边界坑腐蚀类型,它源自不同的起源。 通过设计的实验,通过统计过程控制的过程管理以及减少辅助沉浸式黄金的过程优化是减轻Enepig腐蚀机制的最佳方法。使用电镍沉积物,R/D比很关键,并确定了边界腐蚀的尖尖应力和倾向。电动力(EMF)分析表明,镍比钯的移位较容易移位约三倍。如果孔位于钯层中,则黄金将优先与下面的镍交换,从而在钯尼古尔互面部引起镍腐蚀。腐蚀有三种主要类型的带有enepig沉积物:灾难性的地平线,结节坑和边界坑。镍缝腐蚀是一种特定的边界坑腐蚀类型,它源自不同的起源。通过设计的实验,通过统计过程控制的过程管理以及减少辅助沉浸式黄金的过程优化是减轻Enepig腐蚀机制的最佳方法。
图1。生物启发的多尺度调节,通过模仿肌腱到骨接头的界面建筑,对用前所未有的力学(a)进行工程水凝胶,通过结合纳米级矿物质,以超高的刚度和韧性进行设计。(b)与肌腱类似,具有优先排列结构的水凝胶以及链间/链氢键与各向异性力学和优质疲劳性抗性一起赋予。(c)通过设计纤维结构,扭曲的水凝胶纤维具有较高的韧性,柔韧性和抗疲劳性。(d)水凝胶中的多尺度断裂机制,突出了各种结构元素的贡献,例如微/纳米尺度相,微/纳米尺度纤维和///链内链链氢键。在多个长度尺度上的模态,协同作用有助于改善力学。方程将总断裂能(γ)作为内在和外部断裂能的总和(γ0 +γd)。
微生物腐蚀 (MIC) 是各个行业面临的严峻挑战,包括石油和天然气工业、海洋基础设施和水处理厂,因为微生物活动会显著加速金属降解。 MIC 是由细菌、古细菌和真菌在金属上形成生物膜引起的,它们会引发局部电化学反应,从而导致腐蚀。本文重点关注硫酸盐还原菌(SRB)、铁氧化细菌(IOB)、产甲烷菌等关键微生物,以及支持微生物生长和加速腐蚀的环境因素,包括氧气、营养物、pH值、温度和盐度。此外,还评估了各种 MIC 检测方法,例如微生物分析、电化学阻抗谱 (EIS)、无损检测和实时传感器。缓解策略包括耐腐蚀材料、抗菌涂层、杀菌剂和阴极保护,重点关注提供可持续解决方案的新兴技术,例如智能(自修复)涂层、纳米材料和生物电化学系统。对于更具成本效益和效率的智能涂层的开发、纳米材料的长期环境影响以及生物电化学系统在各种条件下的有效性的优化,还必须进行进一步的研究。通过整合检测和缓解方法,工业界可以保护关键基础设施免受微生物腐蚀的长期影响,并显著降低微生物腐蚀损害的成本。关键词:硫酸盐还原菌(SRB);生物科学;微生物腐蚀(MIC);减轻腐蚀;电化学阻抗谱 (EIS) 摘要 微生物影响腐蚀 (MIC) 对石油和天然气行业、海洋基础设施和水处理设施等各个行业构成了重大挑战,因为微生物活动会显著加速金属降解。 MIC 是由细菌、古细菌和真菌引起的,它们在金属表面形成生物膜,引发局部电化学反应,从而导致腐蚀。本文重点关注硫酸盐还原菌(SRB)、铁氧化细菌(IOB)、产甲烷菌等关键微生物,以及支持微生物生长和加剧腐蚀的环境因素,包括氧气、营养物、pH值、温度和盐度。此外,还评估了各种 MIC 检测方法,包括微生物分析、电化学阻抗谱 (EIS)、无损检测和实时传感器。缓解策略包括耐腐蚀材料、抗菌涂层、杀菌剂和阴极保护,重点关注自修复涂层、纳米材料和生物电化学系统等提供可持续解决方案的新兴技术。进一步的研究对于开发更具成本效益和效率的自修复涂层、了解纳米材料的长期环境影响以及优化生物电化学系统以在不同条件下发挥作用至关重要。通过整合检测和缓解方法,行业可以保护关键基础设施免受 MIC 的长期影响,并显著降低与 MIC 相关故障相关的成本。
免责声明 本信息是根据美国政府机构资助的工作编写的。美国政府及其任何机构或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
腐蚀是材料与环境相互作用而产生的降解,对大多数金属而言,腐蚀是不可避免的 (Barbara et al., 2006)。腐蚀可以定义为金属与周围环境发生化学或电化学反应而产生的破坏性侵蚀。腐蚀是一种代价高昂的自然破坏过程,与地震等自然灾害非常相似 (Winston et al., 2008)。然而,与这些自然灾害不同,腐蚀可以通过适当的措施来控制或预防。金属腐蚀通常通过电化学机制发生,金属原子由于金属与环境之间形成的电路而被去除。此外,腐蚀也可能由于与气体发生反应或暴露于高温、细菌、辐射而发生,
采用JENWAY公司生产的UV/Vis 6850分光光度计对化合物的结构进行了定性研究。灵敏度高,二元分光光度法操作范围为190~1100nm,装置的光放电率为0.1nm。以汞和白炽灯为激发源。研究在室温下进行,以三氯乙烷为溶剂。将所得溶液和标准具倒入1cm矩形石英管中,并插入紫外分光光度计的适当窗口前,获取样品的光谱。在S3样品的紫外光谱中,在215nm处观察到咪唑环的两个吸收带中的一个,强度较小。低强度与连接咪唑的基团有关。因此,该吸收带属于核电子系统的π-π*跃迁。在 330 nm 处记录了氮未分割电子对的 n-π 跃迁的第二条吸收谱带,强度较高。氯与芳环的连接导致舟铬滑动,这在第二条吸收谱带上基本得到显示。C 6 H 4 Cl 基团在 200 和 235 nm 处,在 260、345 和 360 nm 波长处测定了属于菲基团的吸收谱带。在可见光区(535 nm)观察到了二苯基重氮基团的吸收谱带。影响滑动的因素之一是溶剂是多芳基化合物。