只有最少的维护,该电池充电器将提供多年可靠的服务。按照以下简单步骤保持充电器的最佳状态:每次使用后,清洁电池充电器夹 - 请确保去除任何会导致铜夹腐蚀的电池流体。用软布清洁充电器的外壳,并在必要时进行温和的肥皂溶液。在存储期间保持充电器线松散地盘绕,以防止绳索损坏。如果绳索或夹具以任何方式损坏,请勿使用充电器。如果电源线损坏,则必须由制造商,其服务代理或合格人员代替,以避免危害。
执行摘要 BMT 船队技术有限公司受加拿大交通部委托,招标编号为T8275- 020463/001/SS,代表船舶结构委员会评估“压载水化学处理技术导致的结构完整性恶化”。从生物有效性的角度看,全球对各种压载水处理方法的有效性进行了大量研究和开发,2004 年 2 月,国际海事组织同意了第一个包含生物有效性标准的国际压载水管理公约。虽然人们担心深水压载交换的全球强度问题会危及船舶的安全运行,但迄今为止,尚无任何研究检查过结构暴露于压载水处理技术(特别是化学药剂)的长期完整性方面。该项目已分为几个任务,首先进行广泛的文献综述。这篇综述研究了淡水和咸水中钢的腐蚀、pH 值和温度对腐蚀的影响以及氧气的作用。这篇综述指出,暴露在海水中的钢的腐蚀速率从 0.02 到 0.37 毫米/年不等,平均速率约为 0.1 毫米/年。在开放的自然系统中,腐蚀速率受氧气从本体溶液到钢表面的扩散速率控制,而受到侵蚀的碳钢的成分对速率没有影响。最初的腐蚀速率较高,至少是随后稳定状态速率的 2.5 倍,根据一些研究,稳定状态速率在暴露后一个月内开始。还回顾了 pH 值对腐蚀速率的影响,对于含有 NAOH 或 HCl 的软自来水,观察到 pH 值在 4 到 10 之间对腐蚀速率没有影响;然而,使用添加剂的组合,在 pH 值 4 和 10 范围内腐蚀率可能会发生显著变化。腐蚀率也随温度升高而增加。当腐蚀由氧气扩散控制时,给定 O 2 浓度下的腐蚀率在 0 至 30°C 之间加倍。加速本体扩散的其他因素,例如搅拌和润湿和干燥循环,使大气中的氧气在干燥阶段更好地通过弯月面,也会加速腐蚀。这些因素解释了在海洋环境中在水线和飞溅区观察到的增强腐蚀。研究表明,腐蚀速率也会随着盐度的增加而增加,在盐浓度约为 1 ppt 时达到最大值,但是,此后腐蚀速率会随着盐浓度的增加而降低,这与盐浓度超过 1 ppt 后水中溶解氧的减少有关。文献综述中还介绍了微生物腐蚀 (MIC) 的信息,重点关注厌氧腐蚀。已经讨论了厌氧微生物腐蚀的机制以及更重要的氧气的作用等问题,并开展了研究 MIC 的不同实验计划。脱氧是正在提出的防止生物膜生成并因此减少微生物引起的腐蚀的技术之一。然而,普遍认为,由于压载舱排空和充满而交替出现的脱氧和氧化条件可能会导致更高的腐蚀速率。
微生物腐蚀 (MIC) 是各个行业面临的严峻挑战,包括石油和天然气工业、海洋基础设施和水处理厂,因为微生物活动会显著加速金属降解。 MIC 是由细菌、古细菌和真菌在金属上形成生物膜引起的,它们会引发局部电化学反应,从而导致腐蚀。本文重点关注硫酸盐还原菌(SRB)、铁氧化细菌(IOB)、产甲烷菌等关键微生物,以及支持微生物生长和加速腐蚀的环境因素,包括氧气、营养物、pH值、温度和盐度。此外,还评估了各种 MIC 检测方法,例如微生物分析、电化学阻抗谱 (EIS)、无损检测和实时传感器。缓解策略包括耐腐蚀材料、抗菌涂层、杀菌剂和阴极保护,重点关注提供可持续解决方案的新兴技术,例如智能(自修复)涂层、纳米材料和生物电化学系统。对于更具成本效益和效率的智能涂层的开发、纳米材料的长期环境影响以及生物电化学系统在各种条件下的有效性的优化,还必须进行进一步的研究。通过整合检测和缓解方法,工业界可以保护关键基础设施免受微生物腐蚀的长期影响,并显著降低微生物腐蚀损害的成本。关键词:硫酸盐还原菌(SRB);生物科学;微生物腐蚀(MIC);减轻腐蚀;电化学阻抗谱 (EIS) 摘要 微生物影响腐蚀 (MIC) 对石油和天然气行业、海洋基础设施和水处理设施等各个行业构成了重大挑战,因为微生物活动会显著加速金属降解。 MIC 是由细菌、古细菌和真菌引起的,它们在金属表面形成生物膜,引发局部电化学反应,从而导致腐蚀。本文重点关注硫酸盐还原菌(SRB)、铁氧化细菌(IOB)、产甲烷菌等关键微生物,以及支持微生物生长和加剧腐蚀的环境因素,包括氧气、营养物、pH值、温度和盐度。此外,还评估了各种 MIC 检测方法,包括微生物分析、电化学阻抗谱 (EIS)、无损检测和实时传感器。缓解策略包括耐腐蚀材料、抗菌涂层、杀菌剂和阴极保护,重点关注自修复涂层、纳米材料和生物电化学系统等提供可持续解决方案的新兴技术。进一步的研究对于开发更具成本效益和效率的自修复涂层、了解纳米材料的长期环境影响以及优化生物电化学系统以在不同条件下发挥作用至关重要。通过整合检测和缓解方法,行业可以保护关键基础设施免受 MIC 的长期影响,并显著降低与 MIC 相关故障相关的成本。
执行摘要 加拿大交通部代表船舶结构委员会委托 BMT 舰队技术有限公司根据招标编号 T8275- 020463/001/SS 评估“压载水化学处理技术导致的结构完整性恶化”。世界各地已从生物有效性的角度对各种压载水处理方法的有效性进行了大量研究和开发。2004 年 2 月,国际海事组织同意了第一个包含生物有效性标准的国际压载水管理公约。尽管人们担心深水压载交换的全球强度问题会危及船舶的安全运行,但迄今为止的研究均未检查过结构在暴露于压载水处理技术,特别是化学药剂后的长期完整性方面。该项目分为几个任务,首先进行广泛的文献综述。综述研究了钢材在淡水和咸水中的腐蚀、pH 值和温度对腐蚀的影响以及氧气的作用。综述表明,暴露在海水中的钢材的腐蚀速率从 0.02 到 0.37 毫米/年不等,平均腐蚀速率约为 0.1 毫米/年。在开放的自然系统中,腐蚀速率由氧气从本体溶液到钢材表面的扩散速率控制,而受到侵蚀的碳钢的成分对腐蚀速率没有影响。一些研究表明,最初的腐蚀速率较高,至少是暴露后一个月内开始的稳定状态腐蚀速率的 2.5 倍。综述还综述了 pH 值对腐蚀速率的影响,对于含有 NAOH 或 HCl 的软自来水,观察到 pH 值在 4 到 10 之间对腐蚀速率没有影响;但是,使用多种添加剂后,腐蚀速率在 pH 值 4 到 10 范围内会发生巨大变化。腐蚀速率还随温度升高而升高。当腐蚀由氧气扩散控制时,在 0 至 30°C 之间,给定 O 2 浓度下的腐蚀速率会加倍。其他加速本体扩散的因素(例如搅拌和润湿和干燥循环,使大气中的氧气在干燥阶段更好地通过弯月面)也会加速腐蚀。这些因素解释了在海洋环境中观察到的在水线和飞溅区腐蚀加剧的原因。研究表明,腐蚀速率也会随着盐度的增加而增加,并在盐浓度约为 1 ppt 时达到最大值,但是,此后腐蚀速率会随着盐浓度的增加而降低,这与盐浓度超过 1 ppt 后水中溶解氧的减少有关。文献综述中还介绍了有关微生物腐蚀 (MIC) 的信息,重点介绍了厌氧腐蚀。文献讨论了厌氧微生物腐蚀的机制以及更重要的氧气的作用等问题,并开展了研究 MIC 的不同实验项目。脱氧是提出的防止生物膜生成从而减少微生物腐蚀的技术之一。然而,人们普遍认为,由于压载舱排空和充满而交替出现的脱氧和氧化条件可能会导致更高的腐蚀速率。
摘要。腐蚀是一个严重的问题,通常很难完全消除。腐蚀过程经历了许多反应,这些反应改变了金属表面和局部环境的组成和特性。发现有机和无机抑制剂等几种抑制剂很昂贵,有毒,并对环境造成负面影响,这些抑制剂限制了这些抑制剂对腐蚀的使用。在过去的几年中,研究人员将药物用作腐蚀抑制剂。使用药物作为腐蚀抑制剂的使用是无毒的,便宜的,并且对环境的负面影响可忽略不计。通过使用不同类型的药物(褪黑激素,头孢氨酸,曲马多等)作为多种金属等多种金属(如碳钢,碳钢和铝钢)进行了几项研究。研究表明,发现这些药物的抑制作用在金属表面上形成不溶性复合物,从而保护其免受腐蚀。通过使用减肥技术(WL),电力动力极化(PDP)测量,电化学抗性光谱(EIS),电化学频率调制(EFM)和线性抗性等方法,研究了不同药物的腐蚀抑制效率。通过扫描电子显微镜,X射线衍射和原子力显微镜研究了在添加药物之前和之后金属的表面形态。最近通过使用过期的Dapsone药物作为针对低碳钢的腐蚀抑制剂进行了研究工作。腐蚀速率随着抑制剂浓度的增加而降低。腐蚀速率随着抑制剂浓度的增加而降低。研究表明,在低碳钢表面形成改良的戴蓬酮药物的吸附膜会导致质量和电荷转移的阻塞,从而进一步导致腐蚀抑制。头孢氨酸药物对碳钢腐蚀(CS)的影响已通过体重减轻和电化学方法检查。EIS研究表明,抑制过程是通过电荷转移。 使用密度功能理论(DFT)方法进行药物分子的量子化学计算,并发现头皮肽是一种良好的耐碳钢腐蚀抑制剂。 总体而言,研究泄露使用药物作为腐蚀抑制剂的使用不仅是保护金属免受腐蚀的最佳选择,而且还导致对过期药物的废物管理。 本综述着重于近年来药物作为对各种金属的腐蚀抑制剂的利用。EIS研究表明,抑制过程是通过电荷转移。使用密度功能理论(DFT)方法进行药物分子的量子化学计算,并发现头皮肽是一种良好的耐碳钢腐蚀抑制剂。总体而言,研究泄露使用药物作为腐蚀抑制剂的使用不仅是保护金属免受腐蚀的最佳选择,而且还导致对过期药物的废物管理。本综述着重于近年来药物作为对各种金属的腐蚀抑制剂的利用。
执行摘要 加拿大交通部代表船舶结构委员会委托 BMT 舰队技术有限公司根据招标编号 T8275- 020463/001/SS 评估“压载水化学处理技术导致的结构完整性恶化”。世界各地已从生物有效性的角度对各种压载水处理方法的有效性进行了大量研究和开发。2004 年 2 月,国际海事组织同意了第一个包含生物有效性标准的国际压载水管理公约。尽管人们担心深水压载交换的全球强度问题会危及船舶的安全运行,但迄今为止的研究均未检查过结构在暴露于压载水处理技术,特别是化学药剂后的长期完整性方面。该项目分为几个任务,首先进行广泛的文献综述。综述研究了钢材在淡水和咸水中的腐蚀、pH 值和温度对腐蚀的影响以及氧气的作用。综述表明,暴露在海水中的钢材的腐蚀速率从 0.02 到 0.37 毫米/年不等,平均腐蚀速率约为 0.1 毫米/年。在开放的自然系统中,腐蚀速率由氧气从本体溶液到钢材表面的扩散速率控制,而受到侵蚀的碳钢的成分对腐蚀速率没有影响。一些研究表明,最初的腐蚀速率较高,至少是暴露后一个月内开始的稳定状态腐蚀速率的 2.5 倍。综述还综述了 pH 值对腐蚀速率的影响,对于含有 NAOH 或 HCl 的软自来水,观察到 pH 值在 4 到 10 之间对腐蚀速率没有影响;但是,使用多种添加剂后,腐蚀速率在 pH 值 4 到 10 范围内会发生巨大变化。腐蚀速率还随温度升高而升高。当腐蚀由氧气扩散控制时,在 0 至 30°C 之间,给定 O 2 浓度下的腐蚀速率会加倍。其他加速本体扩散的因素(例如搅拌和润湿和干燥循环,使大气中的氧气在干燥阶段更好地通过弯月面)也会加速腐蚀。这些因素解释了在海洋环境中观察到的在水线和飞溅区腐蚀加剧的原因。研究表明,腐蚀速率也会随着盐度的增加而增加,并在盐浓度约为 1 ppt 时达到最大值,但是,此后腐蚀速率会随着盐浓度的增加而降低,这与盐浓度超过 1 ppt 后水中溶解氧的减少有关。文献综述中还介绍了有关微生物腐蚀 (MIC) 的信息,重点介绍了厌氧腐蚀。文献讨论了厌氧微生物腐蚀的机制以及更重要的氧气的作用等问题,并开展了研究 MIC 的不同实验项目。脱氧是提出的防止生物膜生成从而减少微生物腐蚀的技术之一。然而,人们普遍认为,由于压载舱排空和充满而交替出现的脱氧和氧化条件可能会导致更高的腐蚀速率。
执行摘要 BMT 船队技术有限公司受加拿大交通部委托,招标编号为T8275- 020463/001/SS,代表船舶结构委员会评估“压载水化学处理技术导致的结构完整性恶化”。从生物有效性的角度看,全球对各种压载水处理方法的有效性进行了大量研究和开发,2004 年 2 月,国际海事组织同意了第一个包含生物有效性标准的国际压载水管理公约。虽然人们担心深水压载交换的全球强度问题会危及船舶的安全运行,但迄今为止,尚无任何研究检查过结构暴露于压载水处理技术(特别是化学药剂)的长期完整性方面。该项目已分为几个任务,首先进行广泛的文献综述。这篇综述研究了淡水和咸水中钢的腐蚀、pH 值和温度对腐蚀的影响以及氧气的作用。这篇综述指出,暴露在海水中的钢的腐蚀速率从 0.02 到 0.37 毫米/年不等,平均速率约为 0.1 毫米/年。在开放的自然系统中,腐蚀速率受氧气从本体溶液到钢表面的扩散速率控制,而受到侵蚀的碳钢的成分对速率没有影响。最初的腐蚀速率较高,至少是随后稳定状态速率的 2.5 倍,根据一些研究,稳定状态速率在暴露后一个月内开始。还回顾了 pH 值对腐蚀速率的影响,对于含有 NAOH 或 HCl 的软自来水,观察到 pH 值在 4 到 10 之间对腐蚀速率没有影响;然而,使用添加剂的组合,在 pH 值 4 和 10 范围内腐蚀率可能会发生显著变化。腐蚀率也随温度升高而增加。当腐蚀由氧气扩散控制时,给定 O 2 浓度下的腐蚀率在 0 至 30°C 之间加倍。加速本体扩散的其他因素,例如搅拌和润湿和干燥循环,使大气中的氧气在干燥阶段更好地通过弯月面,也会加速腐蚀。这些因素解释了在海洋环境中在水线和飞溅区观察到的增强腐蚀。研究表明,腐蚀速率也会随着盐度的增加而增加,在盐浓度约为 1 ppt 时达到最大值,但是,此后腐蚀速率会随着盐浓度的增加而降低,这与盐浓度超过 1 ppt 后水中溶解氧的减少有关。文献综述中还介绍了微生物腐蚀 (MIC) 的信息,重点关注厌氧腐蚀。已经讨论了厌氧微生物腐蚀的机制以及更重要的氧气的作用等问题,并开展了研究 MIC 的不同实验计划。脱氧是正在提出的防止生物膜生成并因此减少微生物引起的腐蚀的技术之一。然而,普遍认为,由于压载舱排空和充满而交替出现的脱氧和氧化条件可能会导致更高的腐蚀速率。
I.简介热喷雾技术是缓解腐蚀的有效且低成本的解决方案。用涂层保护底物可以通过应用将基板与环境区分开的有效涂层延长材料的寿命,从而避免了频繁修复的必要性。热喷涂技术的缺点是涂料的孔隙率,这会损害其对腐蚀和磨损的抵抗力。然而,文献报告了通过腐蚀评估测试证明其效率的密封剂的使用[1]。由于高沉积速率,维修能力和可用于涂料中可用的材料范围广泛,因此在纺织品,能量,石油,航空航天,汽车工业等中使用热喷雾技术等[2]。热喷涂的涂层的层状结构是一个重要特征
客户利益 在安装过程中,采用了 GF 管路系统提供的多种专业解决方案,例如 ProSite 和 Engineering,提供相关专业知识。客户获得了专业知识支持,并在有限的空间内构建了塑料管道模块,同时保持了所有组件的高纯度。除了根据其对高纯度和耐化学性的需求获得合适的可持续解决方案外,ASE 还通过依赖 GF 管路系统作为一站式解决方案提供商,而不是与多家供应商协调,与以前的项目相比节省了 10% 的工作时间。从长远来看,轻便、非常耐用且无腐蚀的管道系统将减少韩国晶圆清洁业务的维修需求和总体成本。
玻璃器皿清洗机是现代科学实验室必不可少的部件,由于其方便、高效和效果,简化了各种科学仪器的清洗过程。然而,实验室偶尔会遇到玻璃器皿蚀刻的问题,这会损害玻璃器皿的完整性和功能性。蚀刻是玻璃器皿腐蚀的一种形式,表现为玻璃表面暗淡和磨砂的外观。玻璃的物理和化学变化通常会造成不可逆转的损坏。这种退化不仅损害了美观,而且还危及涉及蚀刻玻璃器皿的实验程序的准确性和精确度。本文全面分析了实验室清洗机内玻璃器皿蚀刻的原因、后果和可能的缓解策略。