近年来,基于热激活延迟荧光 (TADF) 发射器的高效有机发光二极管 (OLED) 已经实现,但器件寿命需要进一步提高才能用于实际显示或照明应用。在这项工作中,通过调节单层未掺杂器件的光学腔,提出了一种器件设计原理,以实现高效、长寿命的 TADF OLED。通过增加发射层厚度将腔长延长至二阶干涉最大值可拓宽复合区,同时光学输出耦合效率仍然接近较薄的一阶器件。此类器件设计可得到高效稳定的单层非掺杂 OLED,其最大外量子效率为 16%,LT 90 为 452 小时,初始亮度为 1000 cd m − 2 时 LT 50 为 3693 小时,是一阶 OLED 的两倍。进一步证明,OLED 寿命和光强度之间广泛使用的经验关系源自三线态极化子湮没,从而推算出 100 cd m − 2 时的 LT 50 接近 90 000 小时,接近实际背光应用的需求。
图1。(a)通过B型肽组装制备的人造肽纳米层的示意图,在纳米层面上显示HAAD细胞内递送肽,并使用亲和力TAG(即Ni -NTA)封装货物蛋白。n和c分别表示n-和c末端的边。(b)带有NTA和HAAD部分的B型肽的结构。
图2。基于金属纳米颗粒晶格的结构性等离子体纳米腔阵列。(a)基于耦合偶极法的2D AG NP晶格的计算灭绝效率光谱。(b)扫描电子显微镜(SEM)大型Au NP晶格的图像。(c)SLR的能量分散图。(d)单晶格NP阵列的方案与增益培养基集成了激光。(e)多模式激光的多尺度超晶格阵列的方案。(f)MoiréNP晶格的方案用于层间光学相互作用。面板(a)改编自参考。23经许可;版权所有2004美国物理研究所。面板(B- C)改编自参考。32经许可;版权所有2019美国化学学会。面板(d)改编自参考。30经许可;版权2013自然出版。面板(e)改编自参考。35经许可;版权2017自然出版。面板(F)改编自参考。36经许可;版权2023自然出版。
近年来,眼部成像、药物输送和眼科手术方面的进步使人们能够更好地观察和接触脉络膜上腔。尽管以前人们认为脉络膜上腔只是一个潜在空间,但它可以作为药物输送到后极的途径、青光眼引流装置的出口、临时扣带的位置和假体植入的位置。输送到脉络膜上腔的药物可以在视网膜中达到更高的浓度,同时最大限度地减少前段组织的暴露,从而可能降低青光眼或白内障的风险。最后,先进的多模态成像现在不仅可以更好地了解脉络膜上腔的生理学,还可以在体内监测病理和脉络膜上腔的药物输送。在这里,我们讨论了这个具有潜力的空间在医学和外科应用方面的最新发展。
摘要:对光与物质之间强耦合的研究是研究的重要领域。它的重点不仅源于出现众多引人入胜的化学和物理现象,而且通常是新颖和意外的,而且还源于其为新颖的化学,电子,电子和光子设备设计核心组件设计的重要工具集,例如量子,量子量,量子,量子,激光,放大器,模块化器,传感器,传感器,以及更多。已经证明了各种配置系统和光谱制度的强耦合,每个耦合均具有独特的功能和应用。从这个角度来看,我们将重点关注该研究领域的一个子区域,并讨论超材料和光子频率下的强烈耦合。超材料本身就是电磁谐振器,作为“人工原子”。我们概述了最新进步的概述,并概述了这一跨学科科学的重要和有影响力的领域中可能的研究指示。
量子发射体(例如离子、原子、 NV 中心或量子点)与谐振器光学模式的强耦合和较长的腔光子寿命对于量子光学在基础研究和实用量子技术的众多应用中至关重要。有望满足这些要求的系统是光纤微腔 [1-4]、离子束蚀刻介质谐振器 [5] 或微组装结构 [6]。发射体和腔光子之间的强耦合可以通过很小的腔体体积和非常短的光学腔来实现。然而,对于许多现实的量子装置,由于技术困难,腔镜不能放置得太近:对于囚禁离子系统,短腔会导致介质镜带电并导致射频离子囚禁场畸变 [7];对于中性原子,由于需要将原子输送到腔内以及需要从光学侧面进入腔体进行冷却和捕获[8,9],短腔长受到限制。因此,用于量子光学装置应用的光学腔需要结合强耦合率和低损耗,同时保持镜子足够远。实现强耦合的一种方法是使腔体处于(近)同心配置中 [10]。这使腔中心的光模场腰部最小化,从而使发射极-光子耦合最大化,但是由于镜子上的模场直径较大,会增加削波损耗,从而限制了由腔协同性所能实现的最大腔性能。增加腔中心场振幅的另一种方法是通过调制镜子轮廓来创建某种干涉图案 [11]。我们假设我们不受球形腔的限制,即我们可以使用例如聚焦离子束铣削或激光烧蚀来创建任意形状的镜子,如第 6 节中更详细讨论的那样。在这里,我们用数字方式探索了腔镜的调制球面轮廓,这些轮廓会产生高度局部化的腔模式,同时保持较低的损耗。通过这种方法,我们发现了一种镜子轮廓的流形,它可以提供比同心腔更低的损耗率,从而实现更高的协同性。与我们之前的工作 [ 11 ] 相比,在这里我们不需要先验地了解我们想要生成的确切模式形状(特别是特定的
引起了人们对不对称的Fabry -Pérot(FP)腔的重新兴趣,也称为Gires -Tournois谐振器。它们由一个光学厚和一个具有光学薄的金属镜来构成,光可以进入结构。这些光学元素以其在共鸣和增强所选波长上的光与肌电相互作用方面的易用性和有效性而闻名。[4,6,7]在FP谐振器中实现动态调谐的一般策略是,通常通过动态可调的材料(例如graphene)替换镜子之间通常位于镜子之间的被动绝缘体,[11-13]相位变化镁,[14]通过电流聚合物[14]通过(15]液晶(LCS)[16-18] [16-18] [16-18] [16-18] [16-18] [16-18][22]几项作品表明,在腔体中掺入的吲哚丁基氧化物的电控阳性促进了光吸收[12,19]的控制及其在中边缘[20]和近膜中的反射阶段。[21]其他研究利用了氧化氧化物[23]和聚合物[24-26],其纳米结构可调节所得的反射颜色。研究人员表明,掺杂危险的氧化锌[27]和氧化铝[28]的光学泵送允许在亚皮秒级方向上进行超快调节腔共振。也可以通过轻压以非惯性方式来实现[29]液体电解质中纳米颗粒的自组装[30]和相可可的元摩擦剂。[31]为了降低制造复杂性,多种响应材料
计算器注意:•在主屏幕屏幕上按4:当前返回您的文档文件。•在主屏幕上按1:创建新文档文件的新事物。•您在程序编辑器应用程序中创建和编辑程序。您从计算器应用程序中运行程序。•使用[菜单]键查看当前应用的选项。•CTRL-B是检查语法和存储菜单的快捷方式,可存储您程序的更改。•CTRL-R是检查语法和存储菜单以存储对您程序的更改并将名称粘贴到计算器应用程序•按[Enter]在计算器应用程序输入行上运行名称的程序。•计算器应用程序“记住”最后一个命令。在程序运行以再次运行程序后按Enter。•通过按[var](变量)键在计算器应用中找到您的程序名称。•使用CTRL-LEFL箭头和CTRL-RIGHT箭头或使用TouchPad指针单击所需的页面选项卡。•CTRL-DOC(+页面)将为您的文档添加一个空白页。•CTRL-Z将撤消您的最后一个动作。•要停止(“断路”)程序按下并按住键,直到收到对话框为止。•CTRL-S是保存整个文档文件的快捷方式。定期执行此操作以保存您的工作。
摘要:开发了一种基于微腔纤维马赫德 - Zhhnder干涉仪的新型无标签光纤生物传感器,并实际上证明了用于DNA检测的。使用偏置剪接标准通信单模纤维(SMF)制造生物传感器。传感器的光路径受偏置开放腔中液体样品的影响。在实验中,在折射率(RI)测量中实现了-17,905 nm/riU的高灵敏度。在此基础上,探针DNA(pDNA)使用APTES固定在传感器表面上,从而实现了捕获的互补DNA(cDNA)样品的实时监测。实验结果表明,生物传感器的高灵敏度为0.32 nm/fm,检测限为48.9 AM。同时,传感器具有高度可重复和特定的性能。这项工作报告了易于制造,超敏感和无标签的DNA生物传感器,该生物传感器在医学诊断,生物工程,基因识别,环境科学和其他生物领域中具有重要的潜在应用。