图 2:(a) 距板边缘的距离 (mm) vs 板应力 (MPa);(b) 距翼缘的距离 (mm) vs 翼缘应力 (MPa);(c) 距板与腹板连接处的距离 (mm) vs 腹板应力 (MPa)。(Hu and Jiang 1998)
货油处所结构构件的厚度应符合下列规定: (1) 外板厚度应不小于按第 3 篇第 4 章 302.、304.、305. 和 404. 中的公式计算所得之值,公式中的 1.5 应为 2.0。(2) 干舷甲板的甲板板厚度应不小于按第 3 篇第 5 章 301 中的公式计算所得之值。公式中的 1.5 应为 2.0。(3) 当肋骨、横梁、扶强材和其他构件的尺寸由剖面模数规定时,如果其仅由翼缘板、特殊型材或腹板和面板组成,则腹板厚度应不小于按下列公式计算所得之值。但当腹板深度因强度以外的原因而特别加深时,前述要求可予修改。
左发动机非包容性故障是由高压压缩机 (HPC) 第 8 级圆盘中的疲劳裂纹引起的。疲劳裂纹始于圆盘腹板的后表面,并穿过腹板并沿圆周方向发展。断裂区域在腹板后表面附近具有晶间外观,在远离起始点处具有穿晶外观。穿晶区域表现出与低周疲劳裂纹扩展一致的条纹。 GE 在预测第 8 级盘后腹板的低周疲劳裂纹萌生寿命时考虑了最坏情况(最高应力和温度以及最低材料特性),并发现其低周疲劳萌生寿命约为 29,800 次。(疲劳断裂可分为起始阶段和扩展阶段。在起始阶段,材料结构由于周期性载荷而发生变化,但未形成裂纹。最终形成裂纹并开始增长,表明扩展阶段开始。FAA 咨询通告 33.70-01 使用了该概念
货油处所结构构件的厚度应符合下列规定: (1) 外板厚度应不小于按第 3 篇第 4 章 302.、304.、305. 和 404. 中的公式计算所得之值,公式中的 1.5 应为 2.0。(2) 干舷甲板的甲板板厚度应不小于按第 3 篇第 5 章 301 中的公式计算所得之值。公式中的 1.5 应为 2.0。(3) 当肋骨、横梁、扶强材和其他构件的尺寸由剖面模数规定时,如果其仅由翼缘板、特殊型材或腹板和面板组成,则腹板厚度应不小于按下列公式计算所得之值。但当腹板深度因强度以外的原因而特别加深时,前述要求可予修改。
是后塔马。它是三个身体区域中最长的。与身体其余部分相比,通常相当柔软。身体细分在腹部更为明显。它由11个望远镜段组成。这些段与称为Conjunctiva的段膜连接在一起,这使腹部更加柔韧。腹部柔韧性是交配和产卵的必要条件。每个片段由拱形的背侧巩膜,Tergum和一个小的腹板胸骨组成。没有胸膜,tergum通过薄膜连接到胸骨。椭圆形的透明听觉膜,在第一个腹部段的两侧横向发现鼓膜。有八对腹螺旋。第一对位于第一个腹部节段的鼓膜的tront,其余七对在Tergum的侧面从二到第八腹部段落。
1. 我们理解您评论的概念。我们进一步理解,请求是增加货舱纵向舱壁、密实地板、桁材和腹板的允许应力,以适应在有限元载荷条件下构件未受到净压力的载荷条件,并保留当前较低的允许应力,以适应这些结构受到一侧液体压力的载荷条件。需要注意的是,上述许多区域中的尺寸主要由屈曲要求决定,您要求的更改只会影响由屈服要求决定的尺寸,因此影响有限。横向舱壁处的纵向舱壁是影响所需厚度的主要区域,尤其是在所有货舱都为空或满的 FEM 情况下。在规则的最终版本中,用于检查 100% 船体桁材剪切载荷情况的唯一有限元载荷情况是满载和完全空载的舱室条件。
16 摘要 这是多阶段项目第一阶段进行的技术工作的最终报告,该项目的目标是设计、开发和飞行评估一种先进的复合材料尾翼部件,该部件在生产环境中制造,成本与金属部件相比具有竞争力,重量至少节省 20%。该项目选定的尾翼部件是 L-1011 飞机的垂直尾翼盒。箱体结构从机身生产接头延伸到翼尖肋,包括前后翼梁。对各种设计方案(如加固盖和夹层盖)进行了评估,以得出一种最有可能满足项目目标的配置。所选的首选配置包括带有模制整体加固翼梁的帽形加固盖、铝桁架复合材料肋条和带有整体模制盖的复合材料微型夹板腹板肋条。进行了材料筛选测试以选择先进的复合材料材料
4 铝青铜铸件的制造和设计 53 A 铸件的制造 S3 铸件的制造 53 氧化物夹杂 - 收缩缺陷 - 凝固范围 - 气孔 缺陷预防 56 避免氧化物夹杂 - 定向凝固 - 静态方法定向凝固 - 避免气孔 - 吹气 - 差别收缩和变形 质量控制、测试和检查 66 质量控制的重要性 - 方法记录 - 预铸质量控制 - 铸件质量检查 图案设计 68 B 铸件的设计 71 简介 71 设计以避免收缩缺陷 72 形状的简单性 - 锥度 - 薄壁与厚壁的关系 - 壁面连接和/或圆角半径 - 孤立块 - 腹板和肋条 - 芯孔 - 加工余量的影响 其他设计考虑 76 流动性和最小壁厚 - 减轻重量 - 厚度对强度的影响 - 热裂 - 复合材料铸件 除砂型铸造之外的其他工艺的铸件设计 79
本文介绍了部分为船舶结构委员会项目 # 1442 - 船体结构设计的塑性极限状态调查而进行的实验研究。该研究计划包括一系列越来越大的实验,以研究船舶框架和格架在横向载荷下的塑性行为。初始测试以单个框架进行,固定在端部并在中心或端部附近施加小块载荷,以便可以研究两种形式的塑性破坏,即弯曲和剪切。在测试了八个单框架后,实验继续测试两个小格架(3 个框架连接到一个板面板),然后测试两个大格架(9 个框架加上两个纵梁,连接到 3 个板面板,在 6.8m x 2.46m 的面板中)。描述了实验程序、数据传感器和全部结果。已对框架进行了广泛的 ANSYS 有限元分析,并进行了一些比较。研究发现各种屈曲机制(剪切屈曲、腹板压缩屈曲和弯曲)与整体塑性破坏之间存在许多有趣的关系。讨论了对设计(尤其是基于目标的设计)的影响。
本文介绍了部分为船舶结构委员会项目 # 1442 - 船体结构设计的塑性极限状态调查而进行的实验研究。该研究计划包括一系列规模越来越大的实验,以研究船舶框架和格架在横向载荷作用下的塑性行为。初始测试以单个框架进行,固定在两端,并在中心或两端附近施加小块载荷,以便研究两种形式的塑性破坏,即弯曲和剪切。在测试了八个单个框架后,实验继续测试两个小格架(3 个框架连接到一个板面板),然后测试两个大格架(9 个框架加上两个纵梁,连接到 3 个板面板,位于 6.8mx 2.46m 的面板中)。描述了实验程序、数据传感器和全部结果。对框架进行了广泛的 ANSYS 有限元分析,并进行了一些比较。研究发现各种屈曲机制(剪切屈曲、腹板压缩屈曲和断裂)与整体塑性坍塌之间存在许多有趣的关系。本文讨论了对设计(尤其是基于目标的设计)的影响。