聚集诱导发射(AIE)染料是构建发光囊泡的有效方法[12e16]。目前普遍认为,含有AIE基团的分子自组装可以提供适合原位追踪的优异发光性能,不仅克服了传统荧光染料荧光弱的缺点,还可以追踪囊泡在此过程中的整个循环细节,提供基础知识和实践指导。按照适当的方式,聚集状态下的AIE分子发出的明亮荧光可以照亮生物系统或材料系统中不可见的区域,从而使追踪这些系统的状态成为可能[17e21]。在本文中,我们将介绍AIE技术如何与囊泡相结合,以及当AIE遇到囊泡时会发生什么。
摘要:CRISPR / CAS技术近年来已经急剧提高。已经表征了许多具有新属性的不同系统,并且已经设计了众多混合CRISPR / CAS系统,能够修改表观基因组,调节转录和DNA和RNA中正确的突变。但是,CRISPR / CAS系统的实际应用受到缺乏有效的交付工具的严重限制。在这篇评论中,概述了以核糖核蛋白络合物形式开发用于提供CRISPR / CAS的车辆的最新进展。最重要的是,我们强调使用细胞外囊泡(EV)进行CRISPR / CAS递送,并描述其独特的特性:生物相容性,安全性,合理设计的能力以及越过生物障碍的能力。可用的分子工具以可控制的方式将所需蛋白质和 /或RNA货物加载到囊泡中,并塑造电动汽车表面以靶向递送到特定的组织中(例如,使用靶向配体,肽或纳米生物体)。均出现了内源性(CRISPR / CAS的细胞内产生)和电动汽车的外源性(后生产)负载的机会。
患者来源的微泡/AIE 发光原混合系统用于患者来源的异种移植模型中的个性化声动力癌症治疗 朱道明、郑征、索猛、刘泽明、多艳红* 和唐本忠* 朱德博士、多英教授 暨南大学第二临床医学院、南方科技大学第一附属医院、深圳市人民医院放射肿瘤科,深圳 518020,中国。电子邮箱:yanhong.duo@ki.se 郑志博士、唐本忠教授 香港科技大学高等研究院及化学及生物工程系、国家组织修复重建工程研究中心香港分中心化学系,香港九龙清水湾,中国。电子邮件:tangbenz@ust.hk 朱德博士,索明博士 武汉大学物理科学与技术学院电子科学与技术系,武汉 430072,湖北。 刘哲教授 武汉大学中南医院整形外科,武汉 430071,湖北。 电子邮件:6myt@163.com DZ 和 ZZ 对这项工作做出了同等贡献。 关键词:聚集诱导发射,声敏剂,个性化声动力癌症治疗,患者来源的微泡,患者来源的异种移植模型 摘要 声动力治疗 (SDT) 作为一种有效的肿瘤治疗方法,具有深入肿瘤穿透和疗效高的优势。然而,开发有效的声敏剂仍然具有挑战性。基于 AIEgen 的 SDT 从未见过报道,迫切需要开发新型的 AIEgen 活性声敏剂。此外,基于 AIEgen 的治疗诊断系统有望在 PDX 模型上得到验证,以更接近临床。在此,我们构建了第一个基于 AIEgen 的 SDT 系统,并发现 DCPy 在 SDT 中比传统声敏剂具有优势。然后,通过电穿孔制备的患者来源的 MVs/AIEgen 混合系统用于膀胱癌患者来源的异种移植 (PDX) 模型中的个性化 SDT。令人印象深刻的是,AMV 在 PDX 模型上表现出卓越的肿瘤靶向能力和有效的个性化 SDT 治疗,与 PLGA/AIEgens 纳米粒子和细胞系衍生的微囊泡相比,这两者都有显著改善。这项工作提出了基于 AIEgen 的混合系统作为 SDT 声敏剂的第一个例子,并为 AIE 活性声敏剂的设计和癌症的 SDT 治疗提供了新思路,进一步拓展了潜在的临床
摘要:预计热应力会随着全球变暖而加剧,从而引起重大的社会经济影响并威胁人类健康。湿泡体温度(WBT)是评估区域和全球热应激变异性和趋势的有用内分子。但是,欧洲WBT及其潜在机制的变化尚不清楚。使用观测和重新分析数据集,我们在1958年至2021年越过欧洲的夏季WBT表现出了显着的变暖。特别是,在过去的64年中,欧洲夏季WBT已超过1.0 8 C。我们发现,欧洲夏季WBT的增加是由近表面变暖的温度和增加的大气水分含量驱动的。我们确定了欧洲夏季WBT变异性的四种主要模式,并研究了它们与大规模大气循环和海面温度异常的联系。欧洲WBT变异性的第一个主要模式表现出突出的长期变化,主要是由闪lobal波列和同时的海面温度变化驱动的。欧洲WBT变异性的最后两种主要模式主要显示年际变化,表明对大型大气动力学和附近海面温度变化的直接和快速响应。进一步的分析显示了全球变暖和中纬度循环中夏季WBT变化的作用。我们的发现可以增强对欧洲热压力驱动因素的理解,并为区域决策者和气候适应计划提供宝贵的见解。
聚合物囊泡和脂质纳米颗粒是具有相似物理化学特性的超分子结构,它们是从不同的两亲分子中自组装的。由于其有效的药物封装可容纳,它们是药物输送系统的良好候选者。近年来,具有不同组合物,大小和形态的纳米颗粒已应用于多种不同疗法分子(例如核酸,蛋白质和酶)的递送。它们的显着化学多功能性允许对特定的生物应用进行定制。在这篇综述中,总结了与代表性的示例,以其物理化学特性(尺寸,形状和机械特征),准备策略(胶片再输入,节能,溶剂切换和纳米式)以及对诊断的挑战和应用程序(Image corneption,Image),对诊断的设计方法总结了代表性的示例(尺寸,形状和机械特征),并涉及临床。讨论了从实验室到临床应用和未来观点的过渡。
外膜囊泡或OMV是出色的疫苗候选物。这些球形纳米颗粒(20–200 nm)携带细菌抗原,它们在细菌稳态中起多种作用。革兰氏阴性细菌自然地将OMV释放到其环境中,并且这些OMV可以从培养物中纯化。较小,并具有模仿起源病原体的组成,OMV激活了免疫系统。,但它们没有复制,使OMV成为合适且安全的疫苗平台。我们利用这些特征和具有免疫原性肽和/或蛋白质的Fruther ARM OMV来刺激有效的适应性免疫。
抽象的杂种形成了各种真核生物的进化枝,包括多细胞藻类,鱼类和植物性的致病性卵菌,例如马铃薯枯萎病植物植物和人类肠道原生动物原生动物胚泡。在大多数真核生物中,糖酵解是一种严格的胞质代谢途径,将葡萄糖转化为丙酮酸,导致NADH和ATP的产生(三磷酸腺苷)。相比之下,斯流媒体具有分支的糖酵解,其中回报阶段的酶位于细胞质和线粒体基质中。在这里,我们在胚泡中确定了一个可以运输糖酵解中间体的线粒体载体,例如二羟基乙酮磷酸二羟基苯甲酸酯和3-磷酸甘油醛,穿越线粒体内膜,与细胞质和线粒体分支相关。与系统发育相关的人线粒体氧甲酸酯载体(SLC25A11)和二烷基化合物载体(SLC25A10)进行了比较分析,表明糖酵解中间载体失去了其经过跨性质底物疟疾和氧气的能力。胚泡缺少生成线粒体ATP所需的几个关键成分,例如复合物III和IV,ATP合酶以及ADP/ATP载体。线粒体矩阵中糖酵解的回报阶段的存在会产生ATP,该ATP可以为诸如型蛋白质i使用的蛋白质促进蛋白质和蛋白质和分解蛋白质的物质,从而为诸如大分子核酸菌合物以及NADH等动力提供动力。鉴于其在碳和能源代谢中的独特底物特异性和中心作用,此处鉴定出的糖酵解中间体的载体代表了针对斯特雷默培养病原体的特定药物和农药靶标,这是非常重要的。
主要的文献参考和用于编译SDS毒物和疾病注册机构(ATSDR)的数据来源 Environmental Protection Agency Federal Insecticide, Fungicide, and Rodenticide Act U.S. Environmental Protection Agency High Production Volume Chemicals Food Research Journal Hazardous Substance Database International Uniform Chemical Information Database (IUCLID) National Institute of Technology and Evaluation (NITE) Australia National Industrial Chemicals Notification and Assessment Scheme (NICNAS) NIOSH (National Institute for Occupational Safety and Health) National Library of Medicine's ChemID Plus (NLM CIP) National Library of Medicine's PubMed数据库(NLM PubMed)美国国家毒理学计划(NTP)新西兰的化学分类和信息数据库(CCID)经济合作与发展环境,健康和安全出版物的经济合作与开发的安全出版物组织高生产力化学批量化学批量的经济合作和发展筛查信息筛查信息数据集
利益竞争:加州大学董事会已获得和正在申请 CRISPR 技术专利,JAD 和 GJK 是这些技术的发明者。JAD 是 Caribou Biosciences、Editas Medicine、Scribe Therapeutics 和 Mammoth Biosciences 的联合创始人。JAD 是 Caribou Biosciences、Intellia Therapeutics、eFFECTOR Therapeutics、Scribe Therapeutics、Mammoth Biosciences、Synthego 和 Inari 的科学顾问委员会成员。JAD 是强生公司的董事,其研究项目由 Biogen 和辉瑞公司赞助。PAB 是 Beam Therapeutics 的顾问,拥有股票期权。DRL 是 Editas Medicine、Pairwise Plants、Beam Therapeutics 和 Prime Medicine 的顾问和联合创始人,这些公司使用基因组编辑技术。作者已提交了进化 ABE 的专利申请。
败血症被识别为一种临界疾病,其特征是威胁生命的急性器官功能障碍,这是由宿主对感染的失调反应引起的(Singer等人。,2016年)。认识到败血症的重力,2017年,包括世界卫生大会和世界医疗保健组织在内的全球卫生组织将其检测,预防和治疗优先考虑全球(Reinhart等人(Reinhart等),2017年; Paoli等。,2018年)。估计败血症会影响4-6%的成人住院入院(Rhee等人 ,2017年; Giamarellos-Bourboulis等。 ,2023; Mellhammar等。 ,2023年),在重症监护病房中约有三分之一的患者(ICU)中发现(Sakr等人 ,2018年)。 仅在2017年,全球近4900万人就受到了败血症的影响,有1100万人屈服于这种情况,表明死亡率约为20%(Rudd等人。 ,2020)。 尤其是在美国,每年大约有170万例败血症病例,这种趋势每年都在增加。 这种情况仅在美国每年造成近25万人死亡,这使败血症成为非心脏ICU死亡的主要原因(Vincent等人。 ,2009年; Rhee等。 ,2017年)。 尽管从2002年到2012年,败血症患者对欧洲医院的ICU持续稳定,但该疾病的严重程度显着增加(Vincent等人。 ,2018年)。 死亡率差异很大,但据报道至少为10%,在涉及败血性休克的情况下跃升至40%(Vincent等人。 ,2014年; Rhee等。 ,2017年)。估计败血症会影响4-6%的成人住院入院(Rhee等人,2017年; Giamarellos-Bourboulis等。,2023; Mellhammar等。,2023年),在重症监护病房中约有三分之一的患者(ICU)中发现(Sakr等人,2018年)。仅在2017年,全球近4900万人就受到了败血症的影响,有1100万人屈服于这种情况,表明死亡率约为20%(Rudd等人。,2020)。尤其是在美国,每年大约有170万例败血症病例,这种趋势每年都在增加。这种情况仅在美国每年造成近25万人死亡,这使败血症成为非心脏ICU死亡的主要原因(Vincent等人。,2009年; Rhee等。,2017年)。尽管从2002年到2012年,败血症患者对欧洲医院的ICU持续稳定,但该疾病的严重程度显着增加(Vincent等人。,2018年)。死亡率差异很大,但据报道至少为10%,在涉及败血性休克的情况下跃升至40%(Vincent等人。,2014年; Rhee等。,2017年)。,2018年),当未经处理的败血症时,超过30%(Liu等人此外,败血症治疗的财务负担很大。在美国,败血症管理的医院费用在所有疾病中最高,2011年超过200亿美元,2013年超过230亿美元,持续的成本超过240亿美元,占美国医疗保健总支出的13%(Arefian等人。,2017年; Reinhart等。,2017年; Paoli等。,2018年; Buchman等。,2020)。
