m6A修饰在真核生物中的作用已被证实 (Tavakoli et al., 2023; Chen et al., 2015)。m6A修饰与RNA相关生物过程的几乎所有方面密切相关,包括转录、前体mRNA剪接和加工、核输出、翻译、RNA稳定性和衰变 (Lesbirel et al., 2018; Wang et al., 2014; Wang et al., 2022d)。除此之外,m6A修饰还参与其他生物过程,如转录调控和信号转导 (Zhang et al., 2024b; Patil et al., 2016; Lee et al., 2021a, b)。m6A失调导致多种人类疾病的发展。值得注意的是,m6A修饰在人类癌症的发生发展中起着重要的调控作用。研究发现,m6A调控癌症
腺苷信号代表了调节肿瘤免疫的关键代谢途径,并由肿瘤采用以促进其生长并损害免疫力。腺苷是在高肿瘤微环境(TME)水平上响应缺氧而产生的。这是一种广泛的免疫抑制代谢产物,可调节先天和适应性免疫反应。抑制腺苷生成酶是通过增强T细胞和NK细胞功能并抑制髓样细胞和其他免疫调节细胞的促肿瘤作用来促进抗肿瘤免疫力的一种策略。对靶向腺苷信号各个方面的免疫治疗性的研究已经在进行中,已经开发了几种抵抗腺苷轴的试剂。临床前研究表明,仅需要进行更多的研究来了解它们作为治疗选择的可行性,但需要进行更多的抗肿瘤活性。细胞外腺苷通过四个已知的G蛋白偶联腺苷受体之一激活细胞途径:A 1,A 2A,A 2B和A 3。A 2A受体是在T细胞和天然杀伤T(NKT)细胞,单核细胞,巨噬细胞,DCS和天然杀伤(NK)细胞上表达的高功能受体。相比之下,A 2B受体是相对较低的非实身受体,最多由巨噬细胞和DC表达(1)。许多有利于腺苷生成组织破坏,缺氧,核苷酸酶表达和炎症的因素,这是TME的高度特征。腺苷是一种免疫抑制代谢产物,在TME内部高水平产生。因此,在靶向肿瘤相关腺苷信号的各个方面以增强对恶性肿瘤的免疫反应(2)方面已经完成了显着工作(2)。缺氧,细胞更新增加以及CD39和CD73的表达是腺苷产生的基本因素。癌症免疫疗法中的腺苷途径阻断对癌症患者至关重要。靶向腺苷途径通常集中在免疫抑制腺苷的两个主要方面,这是通过(1)通过靶向CD73和CD39抑制TME中腺苷的产生,以及(2)通过靶向A 2A和2B受体(3)的腺苷信号的阻断。
摘要背景:癌症中最常见的零星纯合缺失之一是9p21损失,其中包括甲基硫酸盐基因氨基磷酸化酶(MTAP),CDKN2A和CDKN2B,并且与恶化的结构和免疫治疗疗法相关。mtap -loss是通过与MAT2A和PMRT5抑制剂的合成致死性来发展的药物靶标。这项研究的目的是研究晚期胃肠道(GI)肿瘤中MTAP-损失的患病率和基因组局势,并研究其作为预后生物标志物的作用。材料和方法:我们对包括5个GI癌的64 860个肿瘤进行了下一代测序以及比较基因组和临床分析。我们比较了一项回顾性研究,比较了gi癌患者的临床结果。结果:GI癌症中MTAP -loss的患病率为8.30%。mtap -loss在胰腺导管腺癌(PDAC)中最普遍,为21.7%,结直肠癌(CRC)为1.1%。mTAP -loss肿瘤更为普遍。在MTAP -loss肿瘤中观察到了潜在靶向基因组改变的患病率(ATM,BRAF,BRCA2,ERBB2,IDH1,PIK3CA和PTEN)的显着差异,并根据肿瘤类型而变化。mtap -loss PDAC,IHCC和CRC的患病率较低或肿瘤突变负担升高。结论:在GI癌中,MTAP -loss是9P21损失的一部分,总体患病率为8%。阳性PD -L1肿瘤细胞表达在MTAP -loss与MTAP -INTACT IHCC肿瘤(23.2%vs 31.2%,p = .017)中的频率较低。mtap -loss发生在22%的PDAC,15%的IHCC,8.7%的胃食管腺癌,2.4%的肝细胞癌和CRC的1.1%,并且与其他可靶向突变相互排斥。关键词:MTAP损失; 9p21损失;基因组学;生物标志物;瘤;胆管癌。
造血是由骨髓中造血干细胞(HSC)产生所有血细胞的过程。促红细胞生成和颗粒状是造血的两个主要分支,分别是红细胞(RBC)和中性粒细胞的生产。虽然红细胞和髓样分化均来自相同的常见髓样祖细胞(CMP),但这两个过程之间的相互作用是复杂的,并且由不同的内在和外在因素紧密地策划,这些因子调节了祖细胞对一个细胞谱系或另一个细胞谱系或另一个细胞谱系的组合。1个末端红细胞生成和粒状植物发生在红细胞岛上,这些岛屿是骨髓中的专门微环体,该微晶体由中央宏观噬菌体组成,周围环绕着红细胞和中性粒细胞前体。2这些结构构成了独特的细胞微环境,并且通过提供必需的营养素,去除细胞碎片以及分泌细胞因子和生长方面来支持细胞增殖和分化至关重要。3越来越多的证据表明,在这些壁ches中发生平衡的微环境提示以及代谢物的运输和信号,还有其他
人类呼吸系统和循环系统紧密协作,确保向所有细胞输送氧气,这对于 ATP 生成和维持生理功能和结构至关重要。在氧气供应有限的情况下,缺氧诱导因子 (HIF) 保持稳定,并在维持细胞缺氧适应过程中发挥根本作用。HIF 最初是在研究促红细胞生成素产生调节时发现的,它影响生理和病理过程,包括发育、炎症、伤口愈合和癌症。HIF 通过增强腺苷生成和受体信号传导来促进细胞外腺苷信号传导,代表一种内源性反馈机制,可抑制过度炎症、支持损伤消退并增强缺氧耐受性。这对于涉及组织缺氧的疾病尤其重要,例如急性呼吸窘迫综合征 (ARDS),这种疾病在全球范围内带来了重大的健康挑战,而没有特定的治疗方案。因此,扩大 HIF 介导的腺苷产生和受体信号传导的药理学策略非常重要。
1 Research&Development,Inoseme Pharma,321 Summer St,Suite 400,波士顿,马萨诸塞州,美国,美国,美国,美国,美国,美国,美国,美国,美国。 boris.tchernychev@inozyme.com(B.T。); di.chu@inozyme.com(D.C。); caitlin.sullivan@inozyme.com(C.S.); lisa.flaman@inozyme.com(l.f.); kevin.obrien@inozyme.com(k.o.); jennifer.howe@inozyme.com(J.H.); zlcheng2012@yahoo.com(Z.C.); David.thompson@inozyme.com(D.T。); daniel.ortiz@inozyme.com(D.O.); yves.sabbagh@inozyme.com(y.s。)2穆纳斯特大学儿童医院一般儿科部,德国穆斯特48149; yvonne.nitschke@ukmuenster.de 3 Intec calcification,医学遗传学中心Ghent中心,Conereel Heymanslaan 10,9000 Ghent,Belgium *通信:Frank.rutsch@ukmuenster.de†这些作者对这项工作做出了同等的贡献。•当前地址:拉利比奥,美国CT 1020套房234号,美国CT 06510,美国。§这些作者共同监督这项工作。
癌症免疫力是指免疫系统识别和消除体内癌细胞的强大能力。这种复杂的防御机制涉及各种类型的免疫细胞,包括 T 细胞和自然杀伤细胞。这些细胞共同作用,识别可能导致肿瘤形成的异常细胞,从而保护身体免受癌症进展。通过有效区分健康细胞和有害细胞,免疫系统在维持整体健康和防止癌症扩散方面发挥着至关重要的作用 ( 1 )。这一过程至关重要,因为癌细胞可以从正常细胞发展而来,并可能找到逃避免疫反应的方法。了解和增强癌症免疫力对于癌症研究和治疗至关重要,因为这些努力可以带来更有效的治疗方法和更好的患者结果。免疫疗法正逐渐被认可为治疗各种类型癌症的重要方法。这种方法包括创新技术,例如免疫检查点抑制剂和 CAR-T 细胞疗法,它们使人体免疫系统能够更有效地对抗癌症。然而,一个关键挑战是优化这些治疗方法以适应更广泛的患者和各种肿瘤类型 ( 2 )。研究人员强调肿瘤微环境——癌性肿瘤周围的区域,可影响治疗效果。该环境的一个关键组成部分是腺苷信号传导。肿瘤可以操纵该通路来欺骗免疫系统,阻止其发起攻击。因此,针对腺苷信号传导有望改善癌症治疗( 3 , 4 )。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2025年2月17日。 https://doi.org/10.1101/2025.02.12.12.637574 doi:Biorxiv Preprint