控制面板 发动机仪表板 壁挂式 EMCP II+ 独立水套水和后冷却器回路 入口/出口连接 高温发动机驱动的 JW 泵。恒温器和外壳 发动机驱动的交流泵 干式排气 柔性接头:弯头、法兰和膨胀器 消声器和带比较法兰的火花抑制消声器 燃料 客户或经销商提供的空燃比控制 后入口连接 SR4B 发电机,包括: 固定安装的断路器 永磁励磁 中压或高压 模绕定子 轴承温度检测器 (RTD) 定子 RTD 低压扩展盒 带 PF/kVAR 的 Cat 数字电压调节器 (Cat DVR) 带 PF/kVAR 控制的电缆接入盒 发电机空气滤清器 空间加热器 欧洲母线 无标准速度控制 散装 2301A 速度控制器 2301A 负载共享调速器 2301D 双增益调速器
摘要 卡诺电池是一种新兴的基载电能存储技术。在充电过程中,该概念通过热泵将多余的电能转换为热能。在放电阶段,动力循环将存储的热能转换回电能。基于有机朗肯循环的卡诺电池依靠技术成熟的组件,可以有效整合低温热源,从而达到相当高的效率。然而,热集成的卡诺电池陷入了功率效率、存储大小和热源利用率之间的权衡。本研究提出了两种方法来尽量减少这种三难困境。第一种方案针对包含闪蒸循环的新型循环布局。模拟结果表明,具有两相膨胀器的有机闪蒸循环可提高卡诺电池的效率,特别是对于高存储温度范围,从而实现更紧凑的存储。第二种方案建议将卡诺电池作为可再生能源和区域供热网之间的高度集成链接。这使得卡诺电池成为一种灵活的部门耦合技术,可以根据需求存储和提供电力和热量。
自 20 世纪 50 年代以来,核火箭主要由洛斯阿拉莫斯国家实验室研发,以提供更快的太空旅行方法。(Bussard 和 DeLauer,1958 年;Dewar,1974 年;Borowski,1987 年;Dewar,2007 年)。这些技术利用核设计,以传统方式将热量从密封核心传输到液氢膨胀器或热电子转换器。从 20 世纪 80 年代开始,一种更有效的核能转换设计出现在火箭中(Haslett,1995 年;Lieberman,1992 年),当火箭远离地球大气层时,核心就会暴露在外,直接使用核碎片推力。从 2011 财年到 2014 财年,NASA 先进概念研究所研究了裂变碎片火箭发动机 (FFRE)。 (Werka 等人,2012 年;Chapline,1988 年;Chapline 等人,1988 年;Chapline 和 Matsuda,1991 年)。FFRE 会以极高的比冲(I SP)将裂变碎片的动量直接转化为航天器动量。I SP 是衡量发动机使用燃料产生推力的效率的指标。对于火箭技术,I SP 定义为每单位重量(地球上)推进剂在时间内的积分推力。(Benson,2008 年;Sutton 和 Biblarz,2016 年)。I SP 由公式 1 给出