操作环境 - 自动无人机俄罗斯乌克兰战争是第一次见证双方无人机的全面冲突。俄罗斯已经尝试了能够自主操作的柳叶刀和Kamikaze无人机,而乌克兰正在使用US-设计的SwitchBlade无人机,这些无人机能够使用算法识别目标。已经观察到了无人机中自主或基于AI的技术的缓慢整合,这实际上只是减少人类控制的软件更改。自主无人机的出现是由于较大的飞行数字构成的,这构成了控制飞行中众多无人机,避免障碍物和这些无人机的精确靶向的挑战。专家现在警告说,无人机的扩散正在推动军队将越来越多的控制权移交给人工智能(AI),并最终朝着可以在战场上运作而无需人类参与的系统。这可能需要一个自主保护循环,因为人类无法在没有AI的情况下防御自主无人机。无人机的自主权在分析无人机中的自主权之前,要理解两个术语 - AI和自动化通常可以互换使用。尽管这两个术语都可以更聪明,更有效地操作,但是这两个术语之间几乎没有概念上的差异。AI和自动化的共同点是数据。自动化设备整理数据时,AI系统对其进行了解释。
3。职责3.1。设计,开发和实施为自治代理系统的代码,重点是但不限于专注于行为模型,因果模型,世界模型,优先级机制,奖励机制,社交交流机制和输入输出输出界面。3.2。使用内部和外部系统和基准评估和评估自主剂系统的性能。3.3。设计,开发和实施用于评估自主代理3.4的性能的系统。设计,开发和实施API功能和体系结构功能。3.5。编写代码以支持测试,分析,验证和验证代码库,包容性自主代理系统,性能评估系统,API系统和其他系统。3.6。考虑可扩展性,算法设计,基础架构以及云提供商系统和服务的整体系统设计,编排和部署。
[草稿] Joseph B. Lyons,Kerianne Hobbs,Steve“ Cap” Rogers,Scott H. Clouse,“负责(使用)AI的负责人”,了解人类在社会技术生态系统中负责任地部署人类在智能技术中的作用[在草案中] Kerianne Hobbs,Bernard Li,“航空航天控制中的人类AI团队的安全,信任和道德考虑”,AIAA Scitech,2024年1月8日至124日,佛罗里达州奥兰多。
1。引言大语模型(LLMS)[53,62]的最新进展改变了人类计算机相互作用的景观,促进了各个领域的创新应用的出现。很值得一提的是,许多曾经牵强的幻想逐渐成为切实的现实。在这项工作中,在最近的科幻小说中所设想的数字生命项目(DLP)一词被采用以构成我们的努力。哪些有资格成为数字生活?从心理角度来看,人类由内部心理过程(思想,例如思想)和外部行为组成[32]。从这个角度来看,我们的目标是利用LLM的精致能力来制作虚拟3D字符,这些字符模仿人类的全部心理过程,并与合成的3D身体运动进行多样化的互动。最近,Park等。引入了生成剂[42],以推动能够模拟人类样的AI剂。尽管取得了令人鼓舞的进步,但这项开创性的工作还是建立在许多简化互动的基础上:代理人以像素化的2D数字表示。共同体[73]旨在建立协作体现的AI,并包括3D代理。但是,3D代理人仍然受到一小部分动作的影响,并且没有表现出社交的能力。现有的作品因此忽略了精致的人类肢体语言的重要性,通过该语言传达了至关重要的信息[7,25,26]。在这里,运动匹配是现代 -此外,当前社会智能模型存在明显的缺陷。这一方面对于不仅模仿人类行为,而且具有人类的思维和情感反应的人物的范围至关重要,甚至具有促进长期关系的能力。为了达到DLP的愿望,我们介绍了一个由两个基本组成部分组成的框架。首先,这是一个精心设计的“数字大脑”,并在严格应用的心理原理中进行设计。利用LLM的紧急能力[40,53,66],大脑产生高级指示并计划角色的行为。值得注意的是,Sociomind从心理测试中引入了很少的射击典范,以形成人格建模的指导结构,在记忆反射过程中利用社会认知心理学理论,并设计了角色之间的谈判机制以进行故事进展。第二,介绍了Momat-mogen范式以解决交互式运动合成的“数字体”,该范例利用了运动匹配[12]和运动生成[76]的互补性质。
1个国家贫困统治任务(Kudumbasree),2个农场信息局,Kowdiar,Thiruvananthapuram 3喀拉拉邦州农村道路发展局(KSRRDA),4 KSUDP,Thiruvananthapuram,Thiruvananthapuram 5信息 Vellayani 8 Agency for Development of Aqua Culture (ADAK) 9 Kerala Fishermen's Welfare Fund Board (KFWFB) 10 Kerala Veterinary and Animal Sciences University (KVASU) 11 Suchithwa Mission, Thiruvananthapuram 12 Kerala State Co-Operative Federation for Fisheries Development Ltd. 13 Kerala Institute of Local Administration (KILA), Thrissur 14 Kerala University of渔业与海洋研究(Kufos))15 Kelappaji Agrl学院。Engg。Engg。& Tech.,Tavanur 16 Society for Assistance to Fisherwomen (SAF), Aluva, Ernakulam 17 Vegetable & Fruits Promotion Council, Kerala (VFPCK) 18 College of forestry Vellanikkara 19 Kerala Real Estate Regulatory Authority, Thiruvananthapuram 20 Goshree Island Development , Ernakulam 21 Kerala State Nirmithi Kendra (KESNIK), TVPM 22喀拉拉邦农业大学,Thrissur 23专业教育学院(CAPE)24合作银行与管理学院,Vellanikkara,Vellanikkara 25 Ambalavayal农业学院,Ambalavayal 26 Farm Informau Bureau,Kowdiar,Kowdiar,Thiruvananthapuram 27 Kerala State Council of Thiruvananthapuram 27 Kerala Seed Council of Kerala Seed Intersion(Kerala Seed Intersion(Kerala)28 KSERASS SERARA(KSERA)28 KSERA VETER(KSERA)(KERALA)28 KSERA(KERA)农业,帕达纳卡德30喀拉拉邦菠萝任务,纳杜克卡拉农业加工工厂,喀拉拉邦小型农民小农民农业联盟(SFAC),32喀拉拉邦州立渔业债务救济委员会33喀拉拉邦州立州住房委员会33喀拉拉邦州立住房委员会,北部国家董事会,州政府34号国府工资委员会(NIFAM)工资&管理层(NIFAM)35 55 Thiruvananthapuram 36 State Agriculture Management and Extension Training Institute 37 State Fisheries Management Council (SFMC) 38 Tvm Development Authority (TRIDA), Thiruvananthapuram 39 State Fisheries Resource Management Society (FIRMA) 40 Kerala State Farmers Debt Releif Commission, Thiruvananthapuram 41 State Horticulture Mission (SHM) 42 Kerala State Science and Technology Museum (Director) 43 Kannur大学(登记官)44 SAMAGRA SIKSHA KERALA(州项目主管)45 Sree Sake Sankaracharya梵文大学(注册官)46喀拉拉邦技术大学,CET校园,Thiruvananthapuram- 47 Cochin Cochin University of Science of Sceennal of Science and Divarrar of Science of Science of Science of Science of Science and Divarrar
在建筑业中的绘画是一种危险活动,为工人带来了许多建筑风险,例如从高处掉下来,笨拙的位置肌肉骨骼疾病以及暴露于有毒物质,尤其是在狭窄的空间中。大多数建筑项目都包括绘画活动和绘画活动的重复性质,导致了几个绘画机器人的提议,目前很少有商业上可用。这些机器人在目前的状态下有一定的局限性,影响了机器人的最终生产力及其在建筑工作地点的实施。本文解决的问题是缺乏对自主绘画机器人(APR)必要要素的研究,以有效,安全地执行施工绘画活动。这表明需要评估可用绘画机器人的当前局限性,以生成可以作为提高APR效率的方法进一步研究的基础的信息。因此,这项研究的目的是确定有效的APR的特性,并将其与市售APR的特性进行比较。对Scopus数据库和Google Scholar库的相关文献进行了全面研究,介绍了定义APR性能的主要参数。该研究强调了评估APR性能以及可用机器人的当前局限性的主要特性。这项研究的结果有望为对提高APR生产率提高的研究人员提供进一步的研究领域。关键词:绘画机器人,自动移动机器人,建筑自动化,建筑安全
摘要关于实验方法的辩论,其作用,限制以及其可能的应用程序最近在自主机器人技术中引起了人们的关注。,如果从一方面,诸如可重复性和重复性的经典实验原理,它是发展该研究领域良好实验实践的灵感,另一方面,一些最新的分析证明了严格的实验方法尚未完全是该社区研究习惯的全部。在本文中,为了给出一部分自主机器人技术中当前的体验实践的理由,这些实践在传统的受控实验概念下无法令人满意地容纳,我们将不再进行探索实验。在这种情况下进行的探索性实验应作为在没有适当理论或理论背景的情况下进行的一种调查形式,在这种情况下,从一开始就无法完全管理对实验因素的控制。我们表明,这一概念源于(并得到)对大量论文样本中报道的实验活动的分析,这些论文已在两个最大,最重要的机器人研究会议上获得了奖励。
在这项研究中,我们评估了自主驾驶(AD)系统中增强学习的鲁棒性(RL),特别是反对对抗攻击的稳健性。我们采用了Karavolos等人提出的基于Q学习的AD模型。[1]的简单性,是我们分析的基础。此选择使我们能够在简单的Q学习方法和更复杂的RL系统之间进行明显的比较。我们设计了两个威胁模型,以模拟对基于RL的广告系统的对抗性攻击。第一个模型涉及在RL模型的细调中注入未发现的恶意代码,使其容易受到对抗性扰动的影响,这可能会导致在特定的触发条件下碰撞。第二个威胁模型旨在通过直接改变RL模型在特定触发条件下的行动决策来引起碰撞,这代表了一种更隐秘的方法。基于这些威胁模型,我们对两种主要情况的实证研究提出:操纵传感器输入和直接对动作的扰动。研究结果表明,尽管基于RL的AD系统表现出针对传感器输入操纵的弹性,但在受到直接动作扰动时它们会表现出脆弱性。主要的和宽容的场景涉及更改传感器读数,例如在偏心转弯期间,这可能会误导系统并可能导致事故。这对于小误差很大的操作至关重要。第二种情况直接扰动动作,更多地是对基于RL的AD系统脆弱性的理论研究,而不是实用的现实世界威胁。
引言 对创造力和意图的伦理关怀 自动化在社会中的传统作用是通过外包日常任务来让人类生活更轻松,并且按照传统,它取代人类的工作以降低成本、增加利润。例如,推荐系统利用语言模型来吸引用户参与预测文本系统。然而,由于它改变了人们的写作方式,这种媒介受到了许多批评。研究发现,这些系统让人变得“像机器一样”——从其意图就可以看出这一点(Varshney 2020b)。这促使人们在实施自动化时要伦理关怀人类的属性——其中之一就是创造力。事实上,早在 1964 年,技术学者刘易斯·芒福德 (Lewis Mumford) 就引用了歌德的《魔法师的学徒》来论述:“首先,让我质疑这样一种观点,即自动化在任何意义上都是最终的利益,它在各个方面都如此有益,因此必须加快这一进程并坚持不懈地扩展到每个领域……”如果人类有机体仅按照这一原则发展,……人类将失去思维能力”(Mumford 1964)。在精神分析中,创造力是驱动艺术体验的表达要素或自然人类冲动(Zweig 2012)。它让观众感到惊讶,因为它突破了被认为是现实体验的界限。令人惊讶的是,它推动了创造力的产生,这一点可以通过好奇机器人的人工智能创造系统将其用作创造性行动的内在动机来检验(Saunders et al. 2010)。人工智能艺术,
