lizzie blythe lizzie.bly@ederalab.co.uk初级客户经理+44(0)20 805 850 18 Sam Salzman sam.salzman@ederalab.co.uk.co.uk International PR Executive +44(0)7848 698 867
AUV NG 是法国军备总局 (DGA)、法国海军、泰雷兹公司和 Exail 于 2023 年开始的合作成果。这项工作的目的是优化两家制造商的解决方案的重复使用,并将开发的重点重新放在具有最高附加值的技术上,从而能够在只有一半大小的无人机中集中法国海军目前使用的 A-27 原型机的所有功能。作为扫雷和水下监视系统的关键要素,该无人机将携带泰雷兹未来一代声纳 SAMDIS 600 声纳以及 MMCM 计划的软件套件。 AUV NG 完全融入了法国海军目前正在实施的未来反水雷系统 (SLAM-F),将与根据该计划获得的指挥中心(特别是布雷斯特中心)协同执行任务,并可在未来的水雷战舰队舰船上实施。
扩散模型在建模复合物和多模态轨迹分布方面表现出色,以进行决策和控制。最近提出了奖励级别指导的denoising,以生成轨迹,从而最大程度地提高了可差异的奖励函数,又是扩散模型捕获的数据分布下的可能性。奖励级别指导的denoisising需要适合清洁和噪声样本的可区分奖励功能,从而限制了其作为一般轨迹优化器的应用。在本文中,我们提出了扩散-ES,一种将无梯度优化与轨迹deNoising结合起来的方法,以优化黑框非差异性目标,同时留在数据管理中。扩散-ES样品在进化过程中的轨迹 - 从扩散模型中搜索,并使用黑框奖励函数得分。它使用截断的扩散过程突变高得分轨迹,该过程应用了少量的no弱和降解步骤,从而可以更有效地探索解决方案空间。我们表明,扩散-ES在Nuplan上实现了最先进的表现,Nuplan是一个已建立的闭环计划基准,用于自动驾驶。扩散-ES的表现优于现有的基于抽样的计划者,反应性确定性或基于扩散的策略以及奖励梯度指导。此外,我们表明,与先前的指导方法不同,我们的方法可以优化由少数弹药LLM提示产生的非差异性语言形状奖励功能。这使我们能够解决最困难的NUPLAN场景,这些方案超出了现有的传统优化方法和驾驶策略的能力。在以遵循指示的人类老师的指导下,我们的方法可以产生新颖的,高度复杂的行为,例如训练数据中不存在的积极的车道编织。1
3。职责3.1。设计,开发和实施为自治代理系统的代码,重点是但不限于专注于行为模型,因果模型,世界模型,优先级机制,奖励机制,社交交流机制和输入输出输出界面。3.2。使用内部和外部系统和基准评估和评估自主剂系统的性能。3.3。设计,开发和实施用于评估自主代理3.4的性能的系统。设计,开发和实施API功能和体系结构功能。3.5。编写代码以支持测试,分析,验证和验证代码库,包容性自主代理系统,性能评估系统,API系统和其他系统。3.6。考虑可扩展性,算法设计,基础架构以及云提供商系统和服务的整体系统设计,编排和部署。
- 未安排在该计划开始之前毕业,并且必须在实习结束后返回印度后至少恢复其学术课程(本科或硕士)至少一个学期或四分之一。- 具有很强的学业成绩记录。- 按照列表中指定的满足所选实验室的要求。- 有兴趣在京都大学寻求博士学位课程。•KU -Star计划的参与者必须同意: - 及时申请适当的签证以及时进入日本。- 在该计划期间,请留在京都大学指定和提供的住宿。- 参加入学和所有必需的会议,活动和文化活动,例如通过京都大学实习计划办公室组织的日语课程。- 在一个参与的实验室中进行30-60天的高级研究项目。- 充分参加分配给他们的实验室的学术活动,参加任何相关的研究研讨会和研讨会。- 在计划结束时准备有关其工作的海报演示文稿。- 首先,将其在计划期间工作中从其工作中产生的任何知识产权分配给其主管。- 提供有关KU -Star计划的反馈。- 同意在该计划期间由京都大学拍摄,并授予大学发布照片的权利。- 为京都大学提供与媒体和公共关系有关的请求。- 在该计划的整个过程中出席京都大学。(鉴于该计划的密集性,参与者将无法在计划期间从事其他工作或学习。不打算在整个计划期间不打算出席京都大学的学生的申请。)
摘要:该项目旨在开发一个旨在在室内环境(例如购物中心,公交车站和电影院)操作的自主垃圾机器人。机器人的主要目标是在浏览空间并避免障碍的同时检测和收集垃圾项目。利用传感器和图像处理技术的组合,机器人可以识别垃圾对象,并调整其在不误认为障碍物的情况下将其捡起的路径。通过采用具有成本效益的硬件组件和简化算法,我们旨在创建一个实用的解决方案,以解决公共空间中的垃圾污染,这证明了机器人技术在环境可持续发展方面的潜力。关键字:Raspberry Pi,垃圾检测,对象识别,避免障碍物,节点MCU,机器人,Arduino IDE
2 Public Works Department, Faculty of Engineering, Cairo University, Giza12613, Egypt amr-m.eldemiry@polyu.edu.hk , muhammad.muddassir@polyu.edu.hk , tarek.zayed@polyu.edu.hk Abstract – In this paper, we propose a ground mobile robot that can perform both surface mapping and subsurface mapping using三维激光雷达同时定位和映射系统(3D激光雷达大满贯系统)和地面穿透雷达(GPR)。机器人由配备3D激光雷达传感器的移动平台和安装在固定机箱上的GPR天线组成。机器人可以自主浏览环境并从表面和地下收集数据。表面映射是通过使用±3 cm范围精度的3D激光镜传感器来观察地形的点云,然后对其进行处理以生成3D表面图。地下映射是通过使用GPR天线将电磁脉冲发射到土壤中并接收反射的,然后对其进行处理以生成3D地下图。然后,我们可以融合表面和地下图以获得地形的全面表示。我们在现实世界中(例如桥梁)演示了机器人的性能。我们表明,我们的机器人可以在表面映射任务和GPR数据采集中实现高精度和效率。
鉴于化学行业对绿色和可持续技术的需求不断增长,他们的原子有效和选择性氧化反应代表了一个关键的挑战。 [1-5]一氧化二氮,N 2 O,在解决此问题中起着重要的作用。 虽然它是一种良好的特种化学物质,主要以其用作麻醉而闻名,但在1980年代,它已开始引起作为选择性氧化剂的大幅关注。 由于其捐赠单个氧原子的能力,它避免了过度氧化的风险,并且尤其是在生态上良性n 2作为唯一的副产品,将其作为许多常规氧化剂的绿色替代品。 [6-8]在接下来的几年中,N 2 O已被证明可以解锁苯对苯酚或甲烷至甲醇的一步氧化的独特途径。 [9,10]前者的高度选择性和便利性,导致了1990年代后期的Alphox过程。 在其中,Boreskov Institute鉴于化学行业对绿色和可持续技术的需求不断增长,他们的原子有效和选择性氧化反应代表了一个关键的挑战。[1-5]一氧化二氮,N 2 O,在解决此问题中起着重要的作用。虽然它是一种良好的特种化学物质,主要以其用作麻醉而闻名,但在1980年代,它已开始引起作为选择性氧化剂的大幅关注。由于其捐赠单个氧原子的能力,它避免了过度氧化的风险,并且尤其是在生态上良性n 2作为唯一的副产品,将其作为许多常规氧化剂的绿色替代品。[6-8]在接下来的几年中,N 2 O已被证明可以解锁苯对苯酚或甲烷至甲醇的一步氧化的独特途径。[9,10]前者的高度选择性和便利性,导致了1990年代后期的Alphox过程。在其中,Boreskov Institute在其中,Boreskov Institute
摘要 - 质量自治有望彻底改变广泛的工程,服务和流动性行业。超密集的自主代理之间的协调复杂的沟通需要新的人工智能(AI)在第五代(5G)和第六代(6G)移动网络中实现无线通信服务的管弦乐队。在特定的安全和任务关键任务中,合法需要透明的AI决策过程,以及一系列人类最终用户(消费者,工程师,法律)的量化质量质量质量(QOT)指标。我们概述了6G的值得信赖的自主权的概念,包括基本要素,例如可解释的AI(XAI)如何产生信任的定性和定量方式。我们还提供了与无线电资源管理和相关的关键绩效指标(KPI)集成的XAI测试协议。提出的研究方向将使研究人员能够开始测试现有的AI优化算法,并开发新的算法,认为应该从设计到测试阶段内置信任和透明度。
自主驾驶或遥控驾驶船舶的引航:操作概念(ConOps)需要考虑从远程操作中心(ROC)操作的引航员,以及如何满足港口当局的安全、法律和环境保护要求;远程引航的可接受性和信任度;关键的安全问题是建立和维护 SA 以及处理紧急情况,例如失去连接或放弃 ROC,导致推力或转向功能丧失;还需要考虑船舶本身、燃料和货物的风险。当要求引航员控制 MASS 时,例如过渡到远程操作以进入港口,需要考虑责任或义务变化方面的潜在法律影响。
