作者:F Bator · 1956 · 被引用 1455 次 — 在真正自我强化的增长过程开始之前,经济中可能出现的实质性经济进步。英国经济扩张。
● 专注于使用高有效载荷无人机 - ULTRA 进行空运货物 ● 超视距操作 (BVLOS) ● ULTRA 无人机平台第三次迭代 - 内部开发高可靠性航空电子系统 ● 在英国拥有丰富的运营经验,并与民航局建立了安全案例 ● 获得美国联邦航空局豁免,可以在贾斯珀县以外运营 ● 在印度和英国建立制造合资企业 ● 与英国国防部签订飞机和培训合同 ● 目前在乌克兰用于供应交付 ● 用于南极气象研究 ● 开始与世界粮食计划署在南部非洲合作提供援助
摘要 - 在过去的十年中,使用自动无人机系统进行测量,搜救或最后一英里的交付呈指数增长。随着这些应用的兴起,需要在复杂和不确定的环境中运行无人机的高度稳健,关键算法。此外,快速快速使无人机能够覆盖更多的地面,提高生产率并进一步增强其用例。一个用于开发高速导航中使用的算法的代理是自动无人机赛车的任务,研究人员将无人机计划无人机通过一系列大门,并尽快避免使用板载传感器和有限的计算能力。速度和加速度分别超过80 kph和4 g,在整个感知,计划,控制和国家估计中提出了重大挑战。为了达到最高性能,系统需要实时算法,这些算法对运动模糊,高动态范围,模型不确定性,空气动力学干扰以及通常无法预测的对手。该调查涵盖了自主无人机在基于模型和基于学习的方法中竞争的进展。我们提供了多年来的领域,其发展的概述,并以将来面临的最大挑战和开放性问题得出结论。
1。引言大语模型(LLMS)[53,62]的最新进展改变了人类计算机相互作用的景观,促进了各个领域的创新应用的出现。很值得一提的是,许多曾经牵强的幻想逐渐成为切实的现实。在这项工作中,在最近的科幻小说中所设想的数字生命项目(DLP)一词被采用以构成我们的努力。哪些有资格成为数字生活?从心理角度来看,人类由内部心理过程(思想,例如思想)和外部行为组成[32]。从这个角度来看,我们的目标是利用LLM的精致能力来制作虚拟3D字符,这些字符模仿人类的全部心理过程,并与合成的3D身体运动进行多样化的互动。最近,Park等。引入了生成剂[42],以推动能够模拟人类样的AI剂。尽管取得了令人鼓舞的进步,但这项开创性的工作还是建立在许多简化互动的基础上:代理人以像素化的2D数字表示。共同体[73]旨在建立协作体现的AI,并包括3D代理。但是,3D代理人仍然受到一小部分动作的影响,并且没有表现出社交的能力。现有的作品因此忽略了精致的人类肢体语言的重要性,通过该语言传达了至关重要的信息[7,25,26]。在这里,运动匹配是现代 -此外,当前社会智能模型存在明显的缺陷。这一方面对于不仅模仿人类行为,而且具有人类的思维和情感反应的人物的范围至关重要,甚至具有促进长期关系的能力。为了达到DLP的愿望,我们介绍了一个由两个基本组成部分组成的框架。首先,这是一个精心设计的“数字大脑”,并在严格应用的心理原理中进行设计。利用LLM的紧急能力[40,53,66],大脑产生高级指示并计划角色的行为。值得注意的是,Sociomind从心理测试中引入了很少的射击典范,以形成人格建模的指导结构,在记忆反射过程中利用社会认知心理学理论,并设计了角色之间的谈判机制以进行故事进展。第二,介绍了Momat-mogen范式以解决交互式运动合成的“数字体”,该范例利用了运动匹配[12]和运动生成[76]的互补性质。
● 每年,许多房屋、企业和建筑物因野火而被摧毁,生命损失惨重,破坏不堪设想。● 这些火灾破坏力极大,往往需要多年时间才能恢复。● 消防部门和美国农业部林务局建议将植被修剪至较低高度,创造可防御空间。这样,可燃物和房屋之间就会形成一道屏障,通过清除潜在的火源来防止野火蔓延。● 由于身体限制和责任,并非每个人都有时间修剪大片草坪,也无法或不愿花费数千美元来支付修剪草坪的费用。● 我们社区和国家的居民都居住在农村地区,拥有大片土地。即使是居住在住宅区的人,周围仍然被需要维护的植被所包围,以帮助解决这个全球性问题。
1个国家贫困统治任务(Kudumbasree),2个农场信息局,Kowdiar,Thiruvananthapuram 3喀拉拉邦州农村道路发展局(KSRRDA),4 KSUDP,Thiruvananthapuram,Thiruvananthapuram 5信息 Vellayani 8 Agency for Development of Aqua Culture (ADAK) 9 Kerala Fishermen's Welfare Fund Board (KFWFB) 10 Kerala Veterinary and Animal Sciences University (KVASU) 11 Suchithwa Mission, Thiruvananthapuram 12 Kerala State Co-Operative Federation for Fisheries Development Ltd. 13 Kerala Institute of Local Administration (KILA), Thrissur 14 Kerala University of渔业与海洋研究(Kufos))15 Kelappaji Agrl学院。Engg。Engg。& Tech.,Tavanur 16 Society for Assistance to Fisherwomen (SAF), Aluva, Ernakulam 17 Vegetable & Fruits Promotion Council, Kerala (VFPCK) 18 College of forestry Vellanikkara 19 Kerala Real Estate Regulatory Authority, Thiruvananthapuram 20 Goshree Island Development , Ernakulam 21 Kerala State Nirmithi Kendra (KESNIK), TVPM 22喀拉拉邦农业大学,Thrissur 23专业教育学院(CAPE)24合作银行与管理学院,Vellanikkara,Vellanikkara 25 Ambalavayal农业学院,Ambalavayal 26 Farm Informau Bureau,Kowdiar,Kowdiar,Thiruvananthapuram 27 Kerala State Council of Thiruvananthapuram 27 Kerala Seed Council of Kerala Seed Intersion(Kerala Seed Intersion(Kerala)28 KSERASS SERARA(KSERA)28 KSERA VETER(KSERA)(KERALA)28 KSERA(KERA)农业,帕达纳卡德30喀拉拉邦菠萝任务,纳杜克卡拉农业加工工厂,喀拉拉邦小型农民小农民农业联盟(SFAC),32喀拉拉邦州立渔业债务救济委员会33喀拉拉邦州立州住房委员会33喀拉拉邦州立住房委员会,北部国家董事会,州政府34号国府工资委员会(NIFAM)工资&管理层(NIFAM)35 55 Thiruvananthapuram 36 State Agriculture Management and Extension Training Institute 37 State Fisheries Management Council (SFMC) 38 Tvm Development Authority (TRIDA), Thiruvananthapuram 39 State Fisheries Resource Management Society (FIRMA) 40 Kerala State Farmers Debt Releif Commission, Thiruvananthapuram 41 State Horticulture Mission (SHM) 42 Kerala State Science and Technology Museum (Director) 43 Kannur大学(登记官)44 SAMAGRA SIKSHA KERALA(州项目主管)45 Sree Sake Sankaracharya梵文大学(注册官)46喀拉拉邦技术大学,CET校园,Thiruvananthapuram- 47 Cochin Cochin University of Science of Sceennal of Science and Divarrar of Science of Science of Science of Science of Science and Divarrar
The Crossfire solution is based on customized available technologies and features multiple drones (large, long-endurance UAVs as well as small, multicopter UAVs), standard communication and navigation technologies, dual fire detection technologies (thermal and optical cameras), enhanced water-based fire suppression (water containers featuring an innovative rupture and dispersion mechanism), all integrated into a System of Systems using optimization方法,AI和机器学习算法。
摘要:该项目旨在开发一个旨在在室内环境(例如购物中心,公交车站和电影院)操作的自主垃圾机器人。机器人的主要目标是在浏览空间并避免障碍的同时检测和收集垃圾项目。利用传感器和图像处理技术的组合,机器人可以识别垃圾对象,并调整其在不误认为障碍物的情况下将其捡起的路径。通过采用具有成本效益的硬件组件和简化算法,我们旨在创建一个实用的解决方案,以解决公共空间中的垃圾污染,这证明了机器人技术在环境可持续发展方面的潜力。关键字:Raspberry Pi,垃圾检测,对象识别,避免障碍物,节点MCU,机器人,Arduino IDE
操作环境 - 自动无人机俄罗斯乌克兰战争是第一次见证双方无人机的全面冲突。俄罗斯已经尝试了能够自主操作的柳叶刀和Kamikaze无人机,而乌克兰正在使用US-设计的SwitchBlade无人机,这些无人机能够使用算法识别目标。已经观察到了无人机中自主或基于AI的技术的缓慢整合,这实际上只是减少人类控制的软件更改。自主无人机的出现是由于较大的飞行数字构成的,这构成了控制飞行中众多无人机,避免障碍物和这些无人机的精确靶向的挑战。专家现在警告说,无人机的扩散正在推动军队将越来越多的控制权移交给人工智能(AI),并最终朝着可以在战场上运作而无需人类参与的系统。这可能需要一个自主保护循环,因为人类无法在没有AI的情况下防御自主无人机。无人机的自主权在分析无人机中的自主权之前,要理解两个术语 - AI和自动化通常可以互换使用。尽管这两个术语都可以更聪明,更有效地操作,但是这两个术语之间几乎没有概念上的差异。AI和自动化的共同点是数据。自动化设备整理数据时,AI系统对其进行了解释。
1。基于气候变化改编的水安全2。水资源的污染和富营养化,主要是titicaca,Uru Uru和Poopólakes。3。还原本地渔业资源的库存。4。提高公众对照顾水质和自然资源的重要性的认识。