I。多亏了不断增长的支持,阿莫尔(Amore)从入门级团队发展到了一支竞争激烈的球队,在比赛期间始终进入决赛,在Roboboat 2024和Virtual Robotx 2023中排名前五。Amore的工作涵盖了四个工程高级设计项目,研究课程,与其他机器人机构的国际合作,以及在北美大湖地区的机器人技术和生物学上发表的学术研究[1],[2]。
1。引言大语模型(LLMS)[53,62]的最新进展改变了人类计算机相互作用的景观,促进了各个领域的创新应用的出现。很值得一提的是,许多曾经牵强的幻想逐渐成为切实的现实。在这项工作中,在最近的科幻小说中所设想的数字生命项目(DLP)一词被采用以构成我们的努力。哪些有资格成为数字生活?从心理角度来看,人类由内部心理过程(思想,例如思想)和外部行为组成[32]。从这个角度来看,我们的目标是利用LLM的精致能力来制作虚拟3D字符,这些字符模仿人类的全部心理过程,并与合成的3D身体运动进行多样化的互动。最近,Park等。引入了生成剂[42],以推动能够模拟人类样的AI剂。尽管取得了令人鼓舞的进步,但这项开创性的工作还是建立在许多简化互动的基础上:代理人以像素化的2D数字表示。共同体[73]旨在建立协作体现的AI,并包括3D代理。但是,3D代理人仍然受到一小部分动作的影响,并且没有表现出社交的能力。现有的作品因此忽略了精致的人类肢体语言的重要性,通过该语言传达了至关重要的信息[7,25,26]。在这里,运动匹配是现代 -此外,当前社会智能模型存在明显的缺陷。这一方面对于不仅模仿人类行为,而且具有人类的思维和情感反应的人物的范围至关重要,甚至具有促进长期关系的能力。为了达到DLP的愿望,我们介绍了一个由两个基本组成部分组成的框架。首先,这是一个精心设计的“数字大脑”,并在严格应用的心理原理中进行设计。利用LLM的紧急能力[40,53,66],大脑产生高级指示并计划角色的行为。值得注意的是,Sociomind从心理测试中引入了很少的射击典范,以形成人格建模的指导结构,在记忆反射过程中利用社会认知心理学理论,并设计了角色之间的谈判机制以进行故事进展。第二,介绍了Momat-mogen范式以解决交互式运动合成的“数字体”,该范例利用了运动匹配[12]和运动生成[76]的互补性质。
lizzie blythe lizzie.bly@ederalab.co.uk初级客户经理+44(0)20 805 850 18 Sam Salzman sam.salzman@ederalab.co.uk.co.uk International PR Executive +44(0)7848 698 867
2024 年 3 月 11 日——平流层卫星平台,其吊舱由平流层气球拖曳,位于大气 99.5% 以上:我们正处于太空的边缘。......我们拥有......
摘要 - 质量自治有望彻底改变广泛的工程,服务和流动性行业。超密集的自主代理之间的协调复杂的沟通需要新的人工智能(AI)在第五代(5G)和第六代(6G)移动网络中实现无线通信服务的管弦乐队。在特定的安全和任务关键任务中,合法需要透明的AI决策过程,以及一系列人类最终用户(消费者,工程师,法律)的量化质量质量质量(QOT)指标。我们概述了6G的值得信赖的自主权的概念,包括基本要素,例如可解释的AI(XAI)如何产生信任的定性和定量方式。我们还提供了与无线电资源管理和相关的关键绩效指标(KPI)集成的XAI测试协议。提出的研究方向将使研究人员能够开始测试现有的AI优化算法,并开发新的算法,认为应该从设计到测试阶段内置信任和透明度。
实习飞行软件、计算机视觉和人工智能瑞士苏黎世公司:Daedalean 是一家总部位于苏黎世的初创公司,由前谷歌和 SpaceX 工程师创立,他们希望在未来十年内彻底改变城市航空旅行。我们结合计算机视觉、深度学习和机器人技术,为飞机开发最高级别的自主性(5 级),特别是您可能在媒体上看到的电动垂直起降飞机。如果您加入我们的实习,您将有机会与经验丰富的工程师一起工作,他们来自 CERN、NVIDIA、伦敦帝国理工学院或……自治系统实验室本身。您将构建塑造我们未来的尖端技术。最重要的是,我们还提供在瑞士阿尔卑斯山试飞期间加入我们飞行员的机会。项目:不同团队提供机会。我们想更多地了解您,以及如何让您的实习成为双方宝贵的经历。告诉我们你一直在做什么,以及你想在我们的团队中从事什么工作。它与深度学习有关吗?状态估计?运动规划?计算机视觉?或者别的什么?向我们展示你的热情所在。如果我们可以在你想从事的领域提供指导和有趣的机会,我们将一起敲定细节。资格: 强大的动手 C++ 证明解决问题的能力 如何申请: 将您的简历/履历发送至 careers@daedalean.ai 。请告诉我们一些关于您自己的信息,为什么您认为自己适合我们以及为什么我们适合您。
自主驾驶是一项复杂而具有挑战性的任务,旨在通过场景和推理来实现安全的运动计划。最近,通过增强的场景理解,几个关键问题,包括缺乏推理,低概括性能和长尾场景,但仍需要戴着几个关键问题,但仍需要进行一些关键问题。在本文中,我们提出了VLP,这是一个新颖的视力 - 语言规划框架,利用语言模式来弥合语言理解与自动驾驶之间的差距。VLP通过加强源内存基础和自动驾驶汽车的上下文理解来增强自主驾驶系统。vlp通过与先前的最佳方法相比,分别在平均L2错误和碰撞率方面,分别在平均L2错误和碰撞率方面实现了35.9%和60.5%的端到端规划表演。此外,在面对新的城市环境时,VLP在挑战性的长尾方案和强大的概括能力方面表现出改善的性能。
在这项研究中,我们评估了自主驾驶(AD)系统中增强学习的鲁棒性(RL),特别是反对对抗攻击的稳健性。我们采用了Karavolos等人提出的基于Q学习的AD模型。[1]的简单性,是我们分析的基础。此选择使我们能够在简单的Q学习方法和更复杂的RL系统之间进行明显的比较。我们设计了两个威胁模型,以模拟对基于RL的广告系统的对抗性攻击。第一个模型涉及在RL模型的细调中注入未发现的恶意代码,使其容易受到对抗性扰动的影响,这可能会导致在特定的触发条件下碰撞。第二个威胁模型旨在通过直接改变RL模型在特定触发条件下的行动决策来引起碰撞,这代表了一种更隐秘的方法。基于这些威胁模型,我们对两种主要情况的实证研究提出:操纵传感器输入和直接对动作的扰动。研究结果表明,尽管基于RL的AD系统表现出针对传感器输入操纵的弹性,但在受到直接动作扰动时它们会表现出脆弱性。主要的和宽容的场景涉及更改传感器读数,例如在偏心转弯期间,这可能会误导系统并可能导致事故。这对于小误差很大的操作至关重要。第二种情况直接扰动动作,更多地是对基于RL的AD系统脆弱性的理论研究,而不是实用的现实世界威胁。
扩散模型在建模复合物和多模态轨迹分布方面表现出色,以进行决策和控制。最近提出了奖励级别指导的denoising,以生成轨迹,从而最大程度地提高了可差异的奖励函数,又是扩散模型捕获的数据分布下的可能性。奖励级别指导的denoisising需要适合清洁和噪声样本的可区分奖励功能,从而限制了其作为一般轨迹优化器的应用。在本文中,我们提出了扩散-ES,一种将无梯度优化与轨迹deNoising结合起来的方法,以优化黑框非差异性目标,同时留在数据管理中。扩散-ES样品在进化过程中的轨迹 - 从扩散模型中搜索,并使用黑框奖励函数得分。它使用截断的扩散过程突变高得分轨迹,该过程应用了少量的no弱和降解步骤,从而可以更有效地探索解决方案空间。我们表明,扩散-ES在Nuplan上实现了最先进的表现,Nuplan是一个已建立的闭环计划基准,用于自动驾驶。扩散-ES的表现优于现有的基于抽样的计划者,反应性确定性或基于扩散的策略以及奖励梯度指导。此外,我们表明,与先前的指导方法不同,我们的方法可以优化由少数弹药LLM提示产生的非差异性语言形状奖励功能。这使我们能够解决最困难的NUPLAN场景,这些方案超出了现有的传统优化方法和驾驶策略的能力。在以遵循指示的人类老师的指导下,我们的方法可以产生新颖的,高度复杂的行为,例如训练数据中不存在的积极的车道编织。1