2个预期的受众本文档旨在使用Oracle Systems工程师,第三方系统集成商,Oracle Enterprise客户和合作伙伴以及Oracle Enterprise Session Border Contrenter(SBC)的最终用户。假定读者熟悉Oracle Enterprise Session Border Controler Controller平台以及RingCentral Byoc和CC平台的基本操作。3文档概述此Oracle技术应用程序注释概述了如何将Oracle SBC与RingCentral Byoc和RingCentral Cloud Connector(CC)配置为Interwork。本文档中包含的解决方案已使用Oracle Communication SBC使用软件版本OS930 GA(SCZ9.3.0补丁)进行测试,请注意,我们已经在此应用程序注释中介绍了与RingCentral Byoc的Oracle SBC集成和RingCentral CC中的RingCentral Byoc,除了更改CC平台的会话代理IP或FQDN外,该config均保持不变。有关此主题的更多帮助,请与您的RingCentral代表联系。请注意,本文档中给出的IP地址,FQDN和配置名称和详细信息仅用于参考目的。这些相同的详细信息不能在客户配置中使用。本文档的最终用户可以根据其网络要求使用配置详细信息。客户可以根据其网络体系结构需求为这些部分配置所有可公开的IPS。4关于RingCentral Byoc RingCentral提供软件作为服务,客户提供自己的本地电信运营商服务(“带您自己的运营商”或“ Byoc”)。BYOC允许客户通过将其现有的本地语音载体连接到Cloud PBX功能(包括视频会议,团队消息传递和文件共享服务)来接收RINGEX的云PBX功能。所有往返于公共交换电话网络(“ PSTN”)的电话通过客户购买和拥有的网关(“网关”),从本地语音运营商的网络上行驶。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
异常检测(AD)代表了一种从根本上进行数据驱动发现的新工具。最初的努力集中在将强大的离线算法调整到这些高通量流系统中,但这种算法应如何适应不断发展的检测器条件的问题仍然是一个重大挑战。在这项工作中,我们引入了一个模块化生态系统,以制定和评估自主发现的策略,其中包含了不同的组件,包括:具有时间依赖性效果的数据集,复杂的触发菜单,实时控制机制和成本感知的优化标准。我们通过使用公共CMS数据集的AD触发器进行了基于强化学习的新基准来说明这一框架,旨在鼓励以社区为导向的发展发展新一代智能和适应性触发器。
抽象的地球物理观察将提供有关行星和卫星内部结构的关键信息,并理解内部结构是这些物体的批量组成和热演化的强大结合。因此,地理观测是发现月球起源和演变的关键。在本文中,我们提出了一个自主月球地球物理实验包的开发,该实验包由一套仪器和带有标准化界面的中央站组成,可以安装在各种未来的月球任务上。通过修复仪器与中央站之间的接口,可以轻松地为不同的任务配置适当的实验包。我们在这里描述了一系列可能作为地球物理包装的地球物理仪器:地震计,磁力计,热流探针和激光反射器。这些仪器将提供与内部结构密切相关的月球的机械,热和大地测量参数。我们讨论了未来对月球的地球物理观察所需的功能,其中包括中央站的开发,而中央站通常会通过不同的有效载荷使用。
•ubuntu(linux)系统的一些经验•一些具有机器人操作系统(ROS/ROS2)的经验•知识是面向对象的编程语言(例如,python,C ++,bash脚本)将是有利的•自我指导且能够在不进行监督的情况下进行,并且有能力进行监督•充满活力和新的项目•愿意与书面沟通•愿意•dival distal•dival dival dival dival dival dival divalsmot地
自主驾驶代表了创新的前沿,具有深刻地重塑运输和流动性的潜力。具有彻底改变运输系统,增强安全性和重新构想城市景观的能力,其重要性不能被夸大。同时,随着全球人口增长和城市化的加速,对高效,可持续和聪明的流动解决方案的需求变得越来越紧迫。自主驾驶为这些挑战提供了令人信服的解决方案,利用了诸如人工智能,传感器融合和连接性等尖端技术,使车辆能够自主行驶,智能地进行沟通并与环境无缝互动。在自动驾驶上的物联网上的ACM交易的本期特刊是一个信标,阐明了该领域的跨学科本质和意义,同时对其广泛的含义提供了深入的见解。涵盖了从计算平台和模拟器的体系结构到感知算法和基础设施集成的多学科主题,该问题采用了面向应用程序的方法,可满足各种各样的研究人员,工程师,策略制造商和行业专业人员。
上下文:自主驾驶系统(AD)的出现标志着朝着智能运输的重大转变,对公共安全和交通效率产生了影响。尽管这些系统集成了各种技术并提供了许多好处,但它们的安全至关重要,因为脆弱性可能会对安全和信任产生严重的后果。目的:本研究旨在使用静态代码分析工具CodeQL系统地研究突出的开源ADS项目代码库中的潜在安全弱点。目标是确定共同的漏洞,它们在版本上的分布和持久性,以增强广告的安全性。方法:我们根据其高github恒星计数和4级自动驾驶功能选择了三个代表性的开源广告项目,即Autoware,Airsim和Apollo。使用CodeQl,我们分析了这些项目的多个版本以识别漏洞,重点是CWE类别,例如CWE-190(Integer Overflow或Wraparound)和CWE-20(输入验证不正确)。我们还通过软件版本跟踪了这些漏洞的生命周期。这种方法使我们能够系统地分析项目中的漏洞,这在以前的广告研究中尚未进行广泛探讨。结果:我们的分析表明,在选定的ADS项目中,特定的CWE类别,尤其是CWE-190(59.6%)和CWE-20(16.1%)。这些漏洞通常持续六个月以上,涵盖了多个版本的迭代。结论:广告中的这些安全问题仍有待解决。经验评估显示了这些漏洞的严重性与它们对ADS性能的切实影响之间的直接联系。我们的发现突出了将静态代码分析集成到ADS开发中以检测和减轻共同漏洞的必要性。同时,主动保护策略(例如定期更新第三方库)对于提高ADS安全至关重要。和监管机构在促进静态代码分析工具和设定行业安全标准方面可以发挥关键作用。
上下文:自主驾驶系统(AD)的出现标志着朝着智能运输的重大转变,对公共安全和交通效率产生了影响。尽管这些系统集成了各种技术并提供了许多好处,但它们的安全至关重要,因为脆弱性可能会对安全和信任产生严重的后果。目的:本研究旨在使用静态代码分析工具CodeQL系统地研究突出的开源ADS项目代码库中的潜在安全弱点。目标是确定共同的漏洞,它们在版本上的分布和持久性,以增强广告的安全性。方法:我们根据其高github恒星计数和4级自动驾驶功能选择了三个代表性的开源广告项目,即Autoware,Airsim和Apollo。使用CodeQl,我们分析了这些项目的多个版本以识别漏洞,重点是CWE类别,例如CWE-190(Integer Overflow或Wraparound)和CWE-20(输入验证不正确)。我们还通过软件版本跟踪了这些漏洞的生命周期。这种方法使我们能够系统地分析项目中的漏洞,这在以前的广告研究中尚未进行广泛探讨。结果:我们的分析表明,在选定的ADS项目中,特定的CWE类别,尤其是CWE-190(59.6%)和CWE-20(16.1%)。这些漏洞通常持续六个月以上,涵盖了多个版本的迭代。结论:广告中的这些安全问题仍有待解决。经验评估显示了这些漏洞的严重性与它们对ADS性能的切实影响之间的直接联系。我们的发现突出了将静态代码分析集成到ADS开发中以检测和减轻共同漏洞的必要性。同时,主动保护策略(例如定期更新第三方库)对于提高ADS安全至关重要。和监管机构在促进静态代码分析工具和设定行业安全标准方面可以发挥关键作用。
摘要 - 隐式表示,例如神经辐射场(NERF),可以通过连续的神经功能在3D场景中绘制颜色,密度和语义。但是,这些模型通常需要手动和仔细的人类数据收集进行培训。本文解决了自主nerf构造的主动探索问题。我们研究代理如何学会有效地探索未知的3D环境,以便在自主性过程中收集的数据能够学习高质量的神经隐式图表示。在四个与机器人相关的下游任务上评估了所学代表的质量:经典的观点渲染,地图重建,计划和姿势改进。我们比较了不同的探索策略的影响,包括基于前沿的基于基础和学习的方法(端到端和模块化)以及针对此问题量身定制的不同奖励功能。经验结果表明,可以使用在看不见的环境中使用一集经验对积极收集的数据进行培训,并且Autonerf是一种经过加固学习训练的模块化勘探策略,使得获得了高质量的NERF,以获得高质量的NERF,以实现经过考虑的下游机器人任务。最后,我们证明,使用Autonerf可以将代理部署到以前未知的场景中,然后通过通过勘探,重建和策略填充的循环来适应场景来自动改善其导航性能。
摘要 - 近年来,自主驾驶技术的兴起强调了可靠软件在确保安全和性能方面的重要性。本文提出了一种使用多模式学习的自动驾驶软件系统中即时软件缺陷预测(JIT-SDP)的新方法。提出的模型利用了多模式变压器,其中预训练的变压器和组合模块与软件系统数据集的多个数据模式相结合,例如代码功能,更改指标和上下文信息。适应多模式学习的关键点是利用不同数据模式(例如文本,数值和分类)之间的注意机制。在组合模块中,在文本数据和包含分类数据和数值数据的表格数据和表格特征上的输出组合在一起,以使用完全连接的层产生预测。对从GitHub存储库(Apollo,Carla和Donkeycar)收集的三个开源自动驾驶系统软件项目进行的实验表明,拟议的方法显着超过了有关评估指标的最先进的深度学习和机器学习模型。我们的发现突出了多模式学习的潜力,以通过改进的缺陷预测来增强自主驾驶软件的可靠性和安全性。