摘要:这项工作解决了补偿自我组织和自然选择的熵成本的动力学要求,从而揭示了生物学的基本原则。生命的代谢和进化特征因此不能与生命的起源分开。生长,自组织,进化和耗散过程需要由从环境中收获的低透镜能量来代谢耦合和助力。进化过程需要一个涉及平衡外中间体和动力学障碍的繁殖周期,以防止生殖循环反向进行。模型分析导致了出乎意料的简单关系,即应赋予系统的能量,其潜力超过了与生成时间与过渡状态寿命比率相关的值,从而实现了模拟自然选择的过程。重现生活的主要特征,尤其是其达尔文人的行为,需要满足与时间和能量有关的满足约束。不可逆的反应周期仅由不稳定的实体制成,重现了其中一些基本特征,从而为可能出现的自主权提供了物理/化学基础。发现这种新兴的自主系统(EASS)能够通过传播稳定的动力学状态来维持和再现它们的物理/化学基础,从而为表观遗传过程提供物理/化学基础。
首先,围绕“自主性”一词的语义争论显然对集成该功能的武器系统(平台和弹药)的开发、分类和监管构成了障碍。事实上,让人类“参与决策”或“在环”决策的武器系统是他律的。只有人类完全“脱离圈子”的那些才可以被描述为自主的,但与人们对“终结者”到来战场的普遍和反乌托邦的恐惧相反,它们的发展迄今为止既不受欢迎也不可能。更准确地说,法国学说根据武器系统各种功能(导航、观察、态势分析、武器指向、射击决策支持、射击决策等)的自动化程度对武器系统进行分类。因此,必须在一个连续体中考虑武器系统的自动化和授权,其中人类拥有自己的全部地位。因此,自动化和自主性之间的区别更多地是由于计算机编程功能的性质造成的:能够单独从一个点移动到另一个点的系统是自动化的,但只有在遇到以下情况时才会被称为自主性:途中遇到障碍,他会知道如何避开它并找到回去的路,甚至决定采取新路线。
空域管理 空域管理必须发展为无人机系统交通管理 (UTM),以适应自主性。它必须具有适应性,以适应在同一空域中共存的非自主和自主飞行器的变化组合。空中交通管理系统将需要一定程度的自主性,以应对各种飞行器以及大幅增加在受控空域中运行的飞行器数量的潜力。空域控制将扩展到地面和 2000 英尺之间的高度,以充分利用较低的空域。不可避免地会从传统方法过渡到新方法,并且在过渡过程中管理不同方法将面临挑战。