在细菌中,天然转座子动员可以驱动自适应基因组重排。在这里,我们以这种能力为基础,并开发了一个可诱导的,自传播的转座子平台,用于整个基因组诱变和细菌中基因网络的动态重新布线。我们首先使用该平台研究转座子功能对平行大肠杆菌种群进化对各种碳源利用和抗生素耐药性表型的影响。然后,我们开发了一个模块化,组合装配管道,用于用合成或内源基因调节元素(例如,诱导型启动子)以及DNA条形码的转座子功能化。我们可以在交替的碳源上进行平行的发展,并证明了诱导性,多基因表型的出现,并且可以持续地跟踪条形码的转座子的易于性,以识别基因网络的致病性重新旋转。这项工作建立了一个合成的转座子平台,可用于优化工业和治疗应用的菌株,例如,通过重新布置基因网络来改善各种原料的增长,并有助于解决有关已雕刻出了极端基因网络的动态过程的基本问题。
1。V. I. Matkovich,硼和耐火硼(Springer,1977)。2。X. Luo等。,金属添加剂对热压tib 2的致密性行为的影响。浅金属,1151-1155(2009)。3。A.A. Shiriev,A。S。Mukasyan,“ SHS过程的热力学”中的“自我传播高温合成的百科全书”中。(Elsevier,2017年),pp。385-387。4。W. Tao等。(2009)400KA大型铝还原电池中热电耦合场的有限元分析。在2009年,世界非网格连接风能和能源会议(IEEE),第1-4页。5。X. Cao等。,添加Ni对钨二吡啶的无压烧结的影响。国际难治金属和硬材料杂志41,597-602(2013)。6。X. Cao等。(2011)高温电化学合成熔融盐的硼化物。高级材料研究(Trans Tech Publ),第463-466页。7。V. Yukhvid,SHS过程的修改。纯和应用化学64,977-988(1992)。8。C. Wang,X。Xue,X。Cao,H。Yang,BN添加对Tib 2- al复合材料的机械性能和微观结构的影响。东北大学杂志(自然科学),19(2012年)。 9。 W. Chao等。 ,一种制造Aln-Tib2复合陶瓷的新方法。 材料和制造过程28,953-956(2013)。 10。 11。东北大学杂志(自然科学),19(2012年)。9。W. Chao等。 ,一种制造Aln-Tib2复合陶瓷的新方法。 材料和制造过程28,953-956(2013)。 10。 11。W. Chao等。,一种制造Aln-Tib2复合陶瓷的新方法。材料和制造过程28,953-956(2013)。10。11。C. Wang,J。Zhang,X。X. Xue,X。Z. Cao(2013)通过真空金属浸润制造B-Ni-Al屏蔽材料。高级材料研究(Trans Tech Publ),第410-413页。P.中国非有产金属协会的交易17,S27-S31(2007)。12。X. Cao等。,来自氯化氯化物 - 尿素深共晶溶剂的SN涂层的电化学行为和电沉积。涂料10,1154(2020)。13。H. C. Yi,J。Moore,粉末 - 压缩材料的自传播高温(燃烧)合成(SHS)。材料科学杂志25,1159-1168(1990)。14。W. Zhang等。,CR含量对Cr – Ti – C系统的SHS反应的影响。合金和化合物杂志465,127-131(2008)。
注解。当前,世界各国许多政府机构和私营企业正奔向地球周围的外层空间,希望找到解决通讯、工业、安全、国防等领域问题的有效解决方案。此类行动通常涉及大量发射小型廉价卫星,而这反过来又会导致太空垃圾数量的增加。本文探讨了发达的哲学和高级系统模型如何有效地组织处于其发展和成长的不同阶段的分布式空间系统。空间捕获技术是通过高级递归移动代码对分布式环境进行并行映射而产生的,能够有效地为任何网络协议和大型卫星星座(主要是位于低地球轨道的卫星星座)的重要应用提供支持。本文介绍了一些技术解决方案的例子,用于在卫星之间建立基本的通信,从第一次通常是混乱的发射开始,到在不断增长的星座中分发和收集数据,即使卫星之间的通信不稳定且快速变化。该工作描述了在卫星间距离可预测的情况下如何组织和注册网络拓扑,以及固定的网络结构如何帮助解决复杂问题。这些结构以及与太空发展局新的多卫星、面向安全的架构相关的结构,可以有效地整合持续的地球观测和基于自传播移动情报的导弹跟踪和消除的共同水平的搜索。该技术的先前版本已在许多文章和六本书中描述,并已在世界各国开发和使用,而最新版本甚至可以在大学环境中有效实施。关键词:太空征服、卫星星座、太空捕获技术、通信协议、太空发展机构的新架构、运输、控制和跟踪级别。抽象的。目前,许多国家的政府机构和私营公司正纷纷涌入地球周围的太空,希望提供智能通信、工业、安全和防御解决方案。这通常涉及大量发射小型廉价卫星,这也导致了太空垃圾的增加。本文讨论了发达的高级系统哲学和模型如何有效地组织处于其发展和成长的不同阶段的分布式空间系统。简要介绍一下空间抓取技术,它基于分布式环境的并行模式匹配和高级递归移动代码,可以有效地提供任何网络协议和大型卫星星座的重要应用,特别是低地球轨道上的卫星星座。本文给出了一些基于技术的解决方案的例子,用于建立卫星之间的基本通信,从最初的、往往混乱的发射开始,到在不断增长的卫星星座中分发和收集数据,卫星之间的连接甚至不稳定且变化很快。它描述了如何在卫星之间的距离可预测的情况下组织和注册网络拓扑,以及固定网络结构如何帮助解决复杂问题。后者包括与新太空发展局的多卫星防御导向架构相关的问题,并允许有效整合其持续的地球监护观察和合作导弹跟踪和消除