工程生物材料 (ELM) 是一类新型材料,旨在合成 21 和/或由生物体填充。ELM 有可能降低材料制造中的能源成本,并提供包括自修复和 23 传感在内的新型材料功能。然而,材料制造的能源成本主要来自用于建筑和机器的刚性材料的生产 24。为了大幅减少碳排放,25 ELM 必须能够替代其中一些刚性材料。然而,由活细胞合成的天然材料不够坚硬,无法替代大多数刚性工程材料 27。此外,目前最坚硬的 ELM 中的细胞活力还不足以实现这些材料的潜在可持续性优势。对刚性 ELM 的需求将需要新的方法来增强驻留细胞活力和/或将活细胞与刚性支架相结合 30。在天然材料中,骨骼是一种罕见的刚性材料 31,它由能够保持多年活力的细胞合成和功能化。骨骼有望为克服挑战提供宝贵的经验,以实现用于承重目的的 ELM 所需的活力和 33 机械性能。34
摘要。在航空电子设备中,飞行员使用头盔显示器 (HMD) 在护目镜上显示外部环境的同步视图和与飞机相关的重要参数。为了完美同步护目镜上的视图,必须同步外部环境的坐标以及飞行员头部运动的坐标。为了定位飞行员头部运动的坐标,称为头部跟踪的过程起着重要作用。头部跟踪可以使用不同的跟踪技术执行,例如光学跟踪、磁跟踪或惯性跟踪。在本文中,六自由度 (6-DoF) 磁运动跟踪装置 (Polhemus Patriot TM ) 用于在模拟器床上实时获取飞行员头部运动的坐标。在跟踪器采集过程中,由于铁磁性引起的磁场干扰,数据可能会丢失。为此,采用自修复神经模型 (SHNM) 来预测丢失的数据。用于恢复的数据有 5200 个 6-DoF 头部运动样本。SHNM 对三组不同的缺失数据的预测准确率超过 85%。将所提模型预测数据的准确率与反向传播神经网络 (BPNN) 模型进行了比较,结果发现 SHNM 模型的准确率优于 BPNN 模型
摘要:航空工业的快速发展对材料性能提出了越来越高的要求,智能材料结构的研究也受到了广泛的关注。智能材料(如压电材料、形状记忆材料、超磁致伸缩材料等)具有独特的物理性能和优异的集成性能,在航空工业中作为传感器或执行器表现出色,为航空工业的各类智能化应用提供了坚实的材料基础。压电材料作为一种热门的智能材料,在结构健康监测、能量收集、振动噪声控制、损伤控制等领域有着大量的应用研究。形状记忆材料作为一种具有变形能力的独特材料,在形状控制、低冲击释放、振动控制、冲击吸收等领域都有着自己突出的表现。同时,作为辅助其他结构的材料,在密封连接、结构自修复等领域也有着重要的应用。超磁致伸缩材料是一种具有代表性的先进材料,在导波监测、振动控制、能量收集等方向具有独特的应用优势。此外,超磁致伸缩材料本身具有高分辨率输出,在高精度执行器方向的研究也较多。本文对上述应用方向的一些智能材料进行总结和讨论,旨在为后续相关研究的初步开展提供参考。
仿生材料的开发灵感来源于具有非凡 10 特性或外观的生物材料和生物体,例如出色的机械强度和韧性、自清洁、自修复、鲜艳的色彩 11 等,以开发具有先进功能的材料和产品。珍珠层就是这样一种非凡的灵感来源,它形成 12 贝壳的内层,通常被称为珍珠母。珍珠层由 95 vol% 的脆性无机矿物 13(CaCO 3 )和 5% 的有机聚合物组成,作为砖和砂浆结构,但其断裂功比纯组成矿物高出约 3000 倍 14。模仿珍珠层这种高强度和高断裂韧性的理想组合,为生产替代、可持续的高性能结构和功能材料铺平了道路。 16 最近的研究进展促成了受珍珠层启发的分级结构纤维、薄膜和块状复合材料的制造。本综述讨论了珍珠层形成的化学性质、实体结构的细节以及强化和变形机制。此外,我们还概述了受珍珠层启发的材料的合成工艺和应用的最新趋势和发展。我们重点介绍了分级复合材料,并简要讨论了通过模仿珍珠层的自然形成而合成的人造碳酸盐。21
腐蚀是一个普遍存在且代价高昂的问题,具有重大的经济和环境影响。防腐涂层在保护各行业免受腐蚀的有害影响方面起着至关重要的作用。这篇全面的综述概述了防腐涂层的最新进展,重点介绍了有机、无机和金属涂层。讨论了防腐涂层的基本原理,包括这些涂层提供防腐保护的机制。这篇综述重点介绍了有机涂层的最新进展,例如新配方的开发、自修复涂层和纳米技术的利用。此外,还探讨了无机和陶瓷涂层的进展,包括表面改性技术和有机-无机杂化涂层的整合。此外,本文还介绍了金属涂层的新兴趋势,包括合金设计、环保选择和表面工程技术。总结了涂层性能和测试的评估方法,包括加速腐蚀测试。这篇综述展示了防腐涂层在各个行业的广泛应用,并附有案例研究。本文还讨论了可再生能源和航空航天等新兴领域的挑战和机遇。最后,本文概述了未来的方向和挑战,强调了正在进行的研究和集成先进材料以实现多功能防腐的重要性。这篇综述论文是从事防腐研究的研究人员、工程师和从业人员的宝贵资源,可以全面了解最新进展并指导未来的研究工作。
摘要。生物自然系统在 38 亿年的时间里进化,其运行条件、限制和边界适用于地球上所有生物,包括人类。如果我们观察自然系统,例如古老的森林,我们会发现数十亿动植物物种中没有浪费、没有污染,也没有类似“失业”危机的情况。目前,人类正在努力解决污染、浪费、地方性贫困、失业和迫在眉睫的生态灾难等问题。看来这些都是意想不到的后果,表明人类系统远非完美,与地球的生态健康不一致。来自生物自然的证据表明,自然系统是经过时间考验的解决方案之一,我们可以从中学习,并且可以提供很多可以让我们的世界变得更好的想法。但是,我们如何将自然界中运作良好的系统和过程转化为可用的解决方案呢?大自然中的一切都可以并且应该被模仿吗?这就是仿生学发挥作用的地方。本次演讲介绍了“仿生学”——一种基于系统的多学科方法,它帮助我们将自然视为不仅仅是原材料的来源,而且是创意和解决方案/先进技术的来源。仿生学现在已经提供了一种向大自然学习的正式结构和方法。仿生学适用于各个领域和各个规模,无论是从自然界的零废物制造、自组织、自修复、自组装到模仿森林生态系统的城市规模系统/智能城市。演讲还将包括演讲者(在印度)举办的研讨会上的一些基于仿生学的项目和设计探索的例子和案例研究。
粘液是一种动态生物水凝胶,主要由糖蛋白粘蛋白组成,具有独特的生物物理特性,并形成保护细胞免受多种病毒侵害的屏障。在这里,这项工作开发了一种基于聚甘油硫酸盐的树枝状粘蛋白启发共聚物 (MICP-1),其中约 10% 的活性二硫化物重复单元作为交联位点。MICP-1 的低温电子显微镜 (Cryo-EM) 分析揭示了细长的单链纤维形态。MICP-1 对许多病毒表现出潜在的抑制活性,例如单纯疱疹病毒 1 (HSV-1) 和 SARS-CoV-2(包括 Delta 和 Omicron 等变体)。MICP-1 使用线性和支链聚乙二醇硫醇 (PEG-thiol) 作为交联剂,生产出具有与健康人痰液相似的粘弹性能和可调节微结构的水凝胶。使用单粒子跟踪微流变学、电子顺磁共振 (EPR) 和低温扫描电子显微镜 (Cryo-SEM) 来表征网络结构。合成的水凝胶表现出自修复特性,以及可通过还原调节的粘弹性能。使用 transwell 测定法来研究水凝胶对 HSV-1 病毒感染的保护特性。活细胞显微镜证实,由于网络形态和阴离子多价效应,这些水凝胶可以通过捕获病毒来保护底层细胞免受感染。总体而言,这种新型粘蛋白共聚物可生成数克级的粘液模拟水凝胶。这些水凝胶可用作富含二硫化物的气道粘液研究的模型,也可用作生物材料。
软体机器人领域发展迅速,其目标是创造出机械柔顺性更强、功能更全、与人类交互更安全的机器人 [1]。为了实现这一目标,研究人员开发出了与传统机器人部件类似的柔性部件,用于传感 [2]、[3]、驱动 [4] 和计算 [5]。一部分软体机器人利用电磁力实现驱动 [6]–[8]。许多研究人员将磁性粒子嵌入有机硅弹性体中,制成可通过外部磁场 [9]–[12] 或局部磁场 [13]、[14] 驱动的软磁复合材料。Kohls 等人设计了一种带有液态金属线圈和软磁复合材料的软电磁铁 [15],然后将这项工作扩展为生产全软电动机 [16]。Li 等人引入了磁性油灰作为软体机器人的可重新编程、自修复建筑材料 [17]。为了替代耗电的电磁铁,机器人专家使用了电永磁体 [18]。电永磁体由两个磁化强度相同但矫顽力不同的永磁体组成 [19]。导电线圈缠绕在磁体周围,使得短暂的电流脉冲可以产生足够强的磁场来反转低矫顽力磁体的磁化,但不足以影响高矫顽力磁体。因此,通过选择性地反转低矫顽力磁体的极性,可以打开(非零净磁化)或关闭(中性净磁化)。与持续吸取电流的电磁铁相比,电永磁体仅在切换状态时短暂消耗能量;永磁体即使在开启状态下也不会消耗电能 [20]。
航天器窗户技术 新的合作机会 参考编号:80JSC021SWT 潜在商业应用:飞机、汽车、建筑、潜水器、水族馆、 关键词:玻璃窗、塑料窗、丙烯酸窗、聚碳酸酯窗、结构窗、光学、窗玻璃、飞机窗户、航天器窗户、挡风玻璃 目的:NASA JSC 寻求与合作伙伴合作,推进与航天器窗户相关的技术,目标是使窗户结构更合理、更轻、更便宜,同时仍保持所需的光学特性。在航天飞机和国际空间站等使人类能够突破探索边界的航天器上,窗户通常由多层玻璃制成。但是,玻璃并不是用于航天器窗户的理想材料。它是一种较差的结构材料。当对玻璃施加负载时,玻璃会随着时间的推移而失去强度,如果微流星体损坏玻璃,强度会立即大幅降低。美国宇航局最新的载人太空飞行器猎户座的内部玻璃由丙烯酸塑料制成。这种材料变化提高了窗户的结构完整性。在追求这些类型的窗户技术进步的过程中,美国宇航局和潜在合作伙伴将为航天器开发新的和改进的窗户功能,这也将为多个行业的地面应用提供更多选择。技术:技术目标包括但不限于:改进涂层以阻挡紫外线,防止因吸收紫外线而导致的降解,降低可燃性,防尘,适应电致变色变暗能力,减轻重量,提高抗冲击性,并确定自修复窗户和窗户作为兼职显示屏的可行性。计划进行研究以确定仅由轻质塑料制成的多窗格窗户的可行性,其中包括长时间的负载测试,以确保不会发生明显的“蠕变”。研发状态:美国宇航局已经对航天器窗户玻璃进行了广泛的开发和测试。这些历史数据(包括飞行数据)涵盖了窗格的光学性能、强度和材料特性,为实现上述技术目标提供了极好的基础。 NASA 配备了众多设施,将用于验证这些技术。光学试验台将验证新功能不会阻挡或扭曲
简介:近几十年来,人们对可穿戴设备的兴趣与日俱增,因为它们能够远程实时监测患者的生命体征 [1]。大多数可穿戴设备的功能仅依赖于电池供电。为了解决这一限制,必须开发出对可穿戴设备非常高效的能量收集系统 [2]。能量收集是收集、转换和输送任何设备可用能量的系统过程。近年来,研究人员已经展示了各种类型的机械能量收集器作为可穿戴平台,包括高度可拉伸的压电能量收集器 [3, 4]、柔性压电纳米发电机 [5, 6] 和基于皮肤的摩擦电纳米发电机 [7]。此外,热能也可以成为可穿戴能量收集应用的可靠来源,因为它的温度恒定在 37°C 左右 [2]。热电发电机 (TEG) 的工作原理是塞贝克效应,可以有效地将设备热侧和冷侧之间的热梯度转换为电能 [8, 9, 27]。人体是一个持续的热量发生器,人体和周围环境之间通常存在温差 [10]。较低的环境温度、空气对流或佩戴者活动较多可以显著增加所收集的能量 [11]。如果 TEG 可以收集人体释放的所有热量(根据身体活动不同,热量范围从 60 到 180 W),则产生的功率将在 0.6–1.8 W 左右 [12]。这个功率足以为许多可穿戴传感器提供能量。近年来,还开发了柔性 TEG,例如 Ren 等人报道的自修复 TEG 系统 [13]。可穿戴热电技术的显著现代应用包括但不限于手表式热电和血氧仪、柔性热电心电图检测器、热电助听器、温度检测设备和智能服装系统 [14]。可穿戴和可植入设备领域(包括生物医学传感器)因其在健康监测、疾病预防、诊断和治疗中的关键应用而引起了人们的极大兴趣 [15]。研究人员展示的可穿戴生物医学传感器技术的最新进展包括但不限于被动无线呼吸传感器、耳内脑电图系统和用于闭环深部脑刺激的无线唤醒/睡眠识别腕带 [16–18]。然而,电池的有限容量和相当大的物理尺寸分别对其寿命和整体尺寸造成了限制。Dagdeviren 等人(2017 年) [19] 和 Zhang 等人(2018 年) [20]。 (2021)[20] 表明从生物体中获取能量是一个可行的解决方案,主要强调自供电生物医学设备的开发。