摘要本研究研究了在郊区接受共享自主班车(SASS)的接受。模型通过对SASS的信任和技术乐观的信任进行了上下文变量的模型。我们检查了使用Sass而没有管家的意图和社会疏远的重要性。数据分别在2020-2021涉及922和608名参与者的飞行员的开头和结束时收集数据,在SAE级3级运行。的发现表明,信任和技术乐观主义显着影响使用SASS的意愿,尽管上下文变量显示出最小的影响。老年人和女性表现出较低的信任和乐观,减少了他们的使用意图。这两个小组还认为,在骑行时保持社交距离更为重要。研究表明,未来的飞行员应避免使用未成熟技术并满足特定群体的社会需求的负面影响。
自动驾驶汽车(SDVS)的抽象开发人员与可能的未来有一个特定的想法。公众不得分享其基于的假设。在本文中,我们分析了英国调查(N¼4,860)和美国(n¼1,890)公众的自由文本响应,这些公众询问受访者在想到SDV时会想到什么弹簧,以及为什么应该或不应该开发它们。响应(平均每个参与者的总共27个单词)倾向于提出安全的希望,并且更常规地担心。许多受访者都提出了技术,其他道路使用者与未来之间关系的替代书籍。而不是接受一种主导的公众参与方法,该方法试图使公众从这些观点中教育,而是建议这些观点应视为社会情报的来源,并为建立更好的运输系统做出了潜在的建设性贡献。预期治理,如果要包容,则应寻求理解和整合公众观点,而不是拒绝它们是不合理的或可变的。
• 在 AI Auto 模式下,室内机显示屏上会出现 (AI Auto) 和 (Wi-Fi) 指示。• 如果收集的用户模式不够,则设定温度设置为 75°F。• 在 AI Auto 模式下,设定温度控制在 72 °F 至 79 °F 范围内。设定温度也可以手动更改。• 如果在 AI Auto 模式下手动更改设定温度,它会自动重新请求 AI 首选温度并在 1 小时后更改回来。• 按下遥控器上的 (Mode) 按钮可以取消 AI Auto 模式。
ab s tr a ct。 p a r c e ll a t i o n s e d i n r e s t i ng -s t a t e t e f m ri(r s -f m ri) f un c t i o n a l d i ff e r e n c e s an nd t h e d o w n s t r e am t a s k。I n t h i s p a p e r , w e i n t r o du c e R e f i n e N e t , a B a y e s i a n - i n s p i r e d d ee p n e t w o r k a r c h i t e c t u r e t h a t a d j u s t s r e g i o n b o und a r i e s b a s e d o n i nd i v i du a l f Un c t i o n a l c o nn e c t i v i ty p r o f il e s。R e f i n e N e t u s e s a n i t e r a t i v e v o x e l r e a ss i gn m e n t p r o c e du r e t h a t c o n s i d e r s n e i ghb o r h oo d i n f o r ma t i o n w h il e b a l a n c i ng t e m p o r a l c o h e r e n c e o f t h e r e f i n e d p a r c e ll a t i o n。W e v a li d a t e R e f i n e N e t o n r s - f M RI d a t a f r o m t h r ee d i ff e r e n t d a t a s e t s , e a c h o n e g e a r e d t o w a r d s a d i ff e r e n t p r e d i c t i v e t a s k : ( 1 ) c o gn i t i v e f l u i d i n t e lli g e n c e p r e d i c t i o n u s i ng t h e H C P d a t a s e t ( r e g r e ss i o n ) , ( 2 ) a u t i s m v e r s u s c o n t r o l d i a gn o s i s u s i ng t h e A B I D E II d a t a s e t ( c l a ss i f i c a t i o n ) , a nd ( 3 ) l a ngu a g e l o c a li z a t i o n u s i ng a n r s - f M RI b r a i n t u m o r d a t a s e t ( s e g m e n t a t i o n ) .W e d e m o n s t r a t e t h a t R e f i n e N e t i m - p r o v e s t h e p e r f o r ma n c e o f e xi s t i ng d ee p n e t w o r k s f r o m t h e li t e r a t u r e o n e a c h o f t h e s e t a s k s .W e a l s o s h o w t h a t R e f i n e N e t p r o du c e s a n a t o m i c a ll y m e a n i ng f u l s ub j e c t - l e v e l p a r c e ll a t i o n s w i t h h i gh e r t e m p o r a l c o h e r e n c e .
本课程通常允许使用人工智能技术(如 ChatGPT),但与任何其他来源一样,必须始终以读者可复制的方式注明出处。此外,此类写作辅助工具可以在创作过程的不同阶段以不同的方式使用。因此,如果您使用任何这些系统来支持您的工作(作业明确允许),您将需要描述其用途和过程。请记住,当使用生成式人工智能技术作为信息来源时,您有责任评估所引用信息的质量、完整性和准确性。
我们对一项名为动力电池检测(PBD)的新任务进行了全面的研究,该任务旨在从 X 射线图像中定位密集的阴极和阳极板端点,以评估动力电池的质量。现有制造商通常依靠人眼观察来完成 PBD,这使得很难平衡检测的准确性和效率。为了解决这个问题并让更多人关注这个有意义的任务,我们首先精心收集了一个称为 X 射线 PBD 的数据集,该数据集包含从 5 家制造商的数千个动力电池中选择的 1,500 张不同的 X 射线图像,具有 7 种不同的视觉干扰。然后,我们提出了一种基于分割的新型 PBD 解决方案,称为多维协作网络(MDCNet)。借助线和计数预测器,可以在语义和细节方面改进点分割分支的表示。此外,我们设计了一种有效的距离自适应掩模生成策略,可以缓解由板分布密度不一致引起的视觉挑战,从而为 MDCNet 提供稳定的监督。无需任何花哨的修饰,我们基于分割的 MDCNet 始终优于其他各种角点检测、人群计数和基于一般/微小物体检测的解决方案,使其成为有助于促进 PBD 未来研究的强大基础。最后,我们分享了一些潜在的困难和未来研究的工作。源代码和数据集将在 X-ray PBD 上公开提供。
在过去的几十年中,描述化学结构的出版物数量稳步增加。然而,目前大多数已发表的化学信息在公共数据库中都无法以机器可读的形式获得。以更少的人工干预方式实现信息提取过程的自动化仍然是一个挑战——尤其是化学结构描述的挖掘。作为一个利用深度学习、计算机视觉和自然语言处理方面的最新进展的开源平台,DECIMER.ai(化学图像识别深度学习)致力于自动分割、分类和翻译印刷文献中的化学结构描述。分割和分类工具是同类中唯一公开可用的软件包,光学化学结构识别 (OCSR) 核心应用程序在所有基准数据集上都表现出色。这项工作中开发的源代码、训练模型和数据集均已在许可下发布。DECIMER Web 应用程序的一个实例可在 https://decimer.ai 获得。