口腔癌是一种高度恶性疾病,其特征是复发,转移和预后不良。自噬是在压力条件下引起的分解代谢过程,已显示在口腔癌发展和治疗中起双重作用。最近的研究已经确定,口腔上皮细胞中的自噬激活通过抑制诸如雷帕霉素(MTOR)哺乳动物靶标(MTOR)和有丝裂原活化蛋白激酶(MAPK)等关键途径来抑制癌细胞的存活,同时激活腺苷一单磷酸蛋白磷酸蛋白磷酸蛋白基因酶(AMP)。诱导自噬会促进真核起始因子4E的降解,从而减少转移并增强化学疗法,放疗和免疫疗法的效率。此外,自噬诱导可以调节肿瘤免疫微环境并增强抗肿瘤免疫力。本综述全面总结了自噬和口腔癌之间的关系,重点介绍其机制和治疗潜力,并结合常规治疗方法。虽然有希望,但尚待阐明自噬诱导剂在口腔癌治疗中的确切机制和临床应用,为未来的研究提供了新的方向,以改善治疗结果并减少复发。
Contenido: Assays for monitoring autophagy in stem cells -- Autophagy in Stem Cell Maintenance and Differentiation -- Autophagy in Embryonic stem cells and Neural stem cells -- Autophagy in Germline Stem Cells -- The role of autophagy in the regulation of hematopoietic stem cells -- Autophagy in Muscle Stem Cells -- Autophagy in Intestinal Stem Cells -- The autophagy lysosomal pathway: friend or成人神经干细胞中的敌人?- 间充质干细胞的自噬 - 基于干细胞的疗法 - 干细胞的自噬对照分化为骨骼疾病的成骨谱系 - 癌症转移的自噬。
抽象的支原体物种是能够自我复制的最小原核生物。在体外感染模型中使用了哺乳动物细胞,支原体牛(M. bovis)和牛乳腺上皮细胞(BMEC)的支原体诱导的自噬。最初,细胞内牛乳杆菌被封闭在BMEC中的膜状结构中,如透射电子显微镜所看。在受感染的BMEC中,通过蛋白质印迹,RT-PCR和激光共聚焦显微镜证实了LC3II的增加,并在感染后1、3和6 h时确认自噬,并在6 hpi处峰值。然而,随后阻塞了牛肉菌诱导的自噬通量。p62降解。beclin1表达在12和24 hpi时降低。此外,自噬体成熟被Bovis颠覆。自噬体酸化。 LAMP-2a蛋白质水平的降低表明溶酶体受到感染的损害。相比之下,自噬(带雷帕霉素或HBSS)激活通过增加牛乳杆菌向溶酶体的递送,克服了牛肉杆菌诱导的吞噬型封锁,并同时降低了细胞内牛bovis的bovis重复。总而言之,尽管牛乳杆菌感染在BMEC中诱导了自噬,但随后抑制自噬 - 某些成熟的自噬通量受到了损害。因此,我们得出的结论是,牛乳杆菌颠覆了自噬以促进其在BMEC中的细胞内复制。这些发现是未来研究的动力,以进一步表征Bovis和哺乳动物宿主细胞之间的相互作用。关键字:支原体牛,牛乳腺上皮细胞,自噬,溶酶体,细胞内复制
高水平的炎性细胞因子诱导神经毒性并催化浮力驱动的神经变性,但是来自小胶质细胞的特定释放机制仍然难以捉摸。在这里,我们表明分泌自噬(SA)是囊泡货物分泌自噬的非悠久模态,可通过SKA2和FKBP5信号来调节神经蛋白 - 流量介导的神经变性。SKA2通过抵消FKBP5功能来抑制SA依赖性IL-1β释放。海马SKA2在雄性小鼠中敲低过度激活SA,从而导致神经蛋白肿瘤,随后的神经变性和六周内完全的河马萎缩。SA的过度激活增加了IL-1β的释放,导致了炎症前喂养的恶性循环,包括NLRP3插入式浮膜激活和Gasdermin d介导的神经毒性,最终导致神经变性。是由男性和雌性人类大脑的蛋白质表达和共免疫沉淀分析的结果表明,SA在阿尔茨海默氏病中被过度激活。总体而言,我们的发现表明,SKA2调节的,多动的SA促进了神经蛋白 - 浮动,并与阿尔茨海默氏病有关,从而提供了对神经素浮肿生物学的机械洞察力。
一个分子生物科学研究所,纳维·格拉兹(Nawi Graz),格拉兹大学,格拉兹,奥地利; B Biotechmed-Graz,格拉兹,奥地利; C卓越领域BioHealth,格拉兹大学,奥地利格拉兹大学; D研究与技术基金会分子生物学与生物技术研究所 - 希拉斯,希腊,希腊; e希腊赫拉克里昂克里特大学科学与工程学院生物学系; f奥地利格拉兹医科大学心脏病学系; G,格拉兹大学,奥地利格拉兹大学药学化学科学研究所G; h马里博尔大学,马里波尔大学医学院生理学研究所;斯洛文尼亚; I基础科学司,希腊赫拉克里翁克里特大学医学院; J Center de Recherche des Cordeliers,ÉquipelabelliséeParla Ligue Conte le cancer,deParisité大学,索邦内大学,INSERM U1138,法国,法国大学,法国,法国,法国; k代谢组学和细胞生物学平台,法国维勒维夫大学的古斯塔夫·鲁西癌中心,法国维勒维夫大学; L Institut du Cancer Paris Carpem,生物学系,HôpitalEuropéenGeorges Pompidou,AP-HP,巴黎,法国,
除了加深对细胞代谢的理解外,这些发现为潜在的治疗应用铺平了道路。通过特定药物或化合物调节自噬可能对治疗肥胖症和2型糖尿病等代谢疾病的治疗有影响,这与脂质和蛋白质产生和降解的失衡有关。此外,提高自噬功能具有通过保持细胞器质量并防止肌肉减少症和其他与年龄相关的疾病来减慢细胞衰老的潜力。
在胰腺癌的治疗研究中,超声靶向的微泡破坏(UTMD)在促进凋亡作为一种安全和非侵入性辅助治疗方面可能显示出潜力。自噬是一种细胞应激反应和存活的调节机制,在肿瘤发育,进展和治疗中起双重作用。然而,自噬在UTMD诱导的胰腺癌细胞凋亡中的作用尚不清楚。在这项研究中,将自噬抑制剂氯喹(CQ)与UTMD结合使用,以治疗体外和体内胰腺癌,并通过Western blot和Tunel染色评估了凋亡的变化。结果表明,UTMD在胰腺癌细胞中诱导了凋亡和自噬。值得注意的是,抑制自噬显着增强了UTMD诱导的凋亡,而抑制凋亡并不影响UTMD诱导的自噬。这些发现表明自噬可降低UTMD在治疗胰腺癌中的有效性。这项研究提供了有关治疗胰腺癌的UTMD的新观点,这表明将自噬抑制剂结合起来可能是提高胰腺癌治疗有效性的有前途的策略。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
作为一种高度保守的细胞过程,自噬一直是广泛研究的重点,因为它在维持细胞稳态及其在心血管发病机理中的影响方面的关键作用。在多种动物模型中已经认识到肌肉功能的下降以及神经元系统以及对压力的敏感性的提高。心血管结构和细胞功能障碍的自噬缺陷与哺乳动物和果蝇中心脏的生理和病理状况有关。在这篇综述中,我们系统地分析了水果层心脏中与自噬相关的途径,并旨在为为患者开发潜在治疗以及有效的农业应用策略提供全面的理解。该分析阐明了果蝇在生理和病理条件下心血管功能中自噬的分子机制,从而对心血管疾病的发展提供了显着的见解。关键自噬相关蛋白的丧失,包括跨膜蛋白ATG9及其伴侣ATG2或ATG18,以及DMSETRIN,导致心脏肥大和果蝇的结构异常,类似于年龄依赖于年龄的心脏功能功能。自噬相关(ATG)基因家族,细胞或核骨骼层粘连蛋白以及雷帕霉素(MTOR)信号途径的机械或哺乳动物靶标在果蝇中的心脏功能中具有严重影响的果蝇功能,具有自噬激活,表现为抑制心脏层板层层板层层。本评论评估了心脏自噬的功能意义,MTORC1/C2复合物以及ATG2-AMPK/SIRT1/PGC-1α途径的轴,在哺乳动物和果实中的心脏中至关重要,导致心脏发展,成长,成熟,以及心脏体内稳态的维持。几种干预措施的有益作用增强了心脏功能,包括运动和冷应激,可以影响哺乳动物和果蝇中丝氨酸/苏氨酸蛋白激酶信号传导的自噬依赖性TOR活性。练习表现出可确定的自噬并在过度时会抑制自噬,从而突出了自噬在心脏健康中的双重作用。