我们将创造并维持一种有利于抓住一切机会萌发新知识的氛围。我们将传授的教育将使我们的学生能够设计出新的解决方案,以满足社会各阶层在材料和能源方面的需求,同时保护环境和节约自然资源。我们的努力虽然远远超出了课堂的范围,但旨在提高公共福利,我们传播知识的尝试将扩展到更大的多学科和跨学科平台,以进行研究、发现、技术开发、服务行业和创业,这与印度成为福利国家的愿望一致。我们将让科学家和工程师与其他学科的专业人士合作,以找到更好的解决方案。我们将为所有学生打下坚实的基础,鼓励他们成为我们的大使,参与他们选择在国家和国际层面为社会服务的专业活动。通过我们的愿景,我们将服务于专业和社会,努力作为一个团队达到顶峰,最终成为年轻一代的榜样。 12. 机构负责人和 NBA 协调员(若指定)的联系信息:
自测试是一种仅基于其经典输入输出相关性来表征任意量子系统的方法,在独立于设备的量子信息处理以及量子复杂性理论中发挥着重要作用。先前关于自测试的研究需要假设系统的状态在仅执行本地测量且无法通信的多方之间共享。在这里,我们用单个计算受限方取代了多个非通信方的设置,这在实践中很难执行。具体来说,我们构建了一个协议,允许经典验证者稳健地证明单个计算受限的量子设备必须准备一个贝尔对并对其执行单量子位测量,直到对设备的状态和测量应用基础变化。这意味着在计算假设下,验证者能够证明单个量子设备内存在纠缠,这是一种通常与两个分离的子系统密切相关的属性。为了实现这一点,我们基于 Brakerski 等人首次引入的技术。 (2018)和 Mahadev (2018) 允许经典验证者约束量子设备的行为,假设该设备不会破坏后量子密码学。
9规则19b-4(e)(1)规定,自我监管组织(“ SRO”)对新的衍生证券产品的上市和交易不被认为是拟议的规则更改,根据规则19B-4款(c)(1)的规则19B-4款,如果委员会根据委员会批准了第19条(b)的列表,该列表批准了第19条(b)的列表(b),该列表(b)的列表(b)the the traber ot the trul ot the Pruros of Act of Act octro octro oct oct octro oct octro oct octro oct octro oct octro octro octro octro octro的列表。新的衍生证券产品和SRO具有针对产品类的监视计划。根据本规则14.11(n)的规定,交易所提出了新规则14.11(n),以建立多级ETF的通用清单标准,允许根据豁免规则6C-11的豁免权,根据投资公司的豁免第6C-11条,该法案允许提供多个级别的ETF类别,以提供交换级别,以提供交换级别的款项,以提供交换级别的款项,并分享了一类,以供应额外的交易所。基金。因此,根据拟议规则14.11(n)列出的多级ETF将不需要根据规则19b-4进行单独的规则更改,然后才能在交易所列出和交易。
尽管上下文化的语言模型最近在各种NLP任务上取得了成功,但语言模型本身仍无法捕获长长的多句文档的文本共同(例如,段落)。人类经常就发言之前就何种方式以及如何发言做出结构性决定。通过这种高级决策和以连贯的方式构建文本的指导性实现被称为计划过程。模型可以在哪里学习这样的高级相干?段落本身包含在这项工作中称为自upervision的各种形式的归纳相干信号,例如句子顺序,局部关键字,修辞结构等。以此为动机,这项工作为新的段落完成任务p ar -c om;在图形中预测蒙版的句子。但是,该任务遭受了预测和选择相对于给定上下文的适当局部内容。为了解决这个问题,我们提出了一个自我监督的文本计划,该计划可以预测首先说出的内容(内容预测),然后使用预测的内容指导验证的语言模型(表面实现)。SSPlanner在自动和人类评估中的段落完成任务上的基线生成模型优于基线生成模型。我们还发现,名词和动词类型的关键字的组合是最有效的内容选择。提供了更多内容关键字,总体发电质量也会提高。
目的:确定家庭医学部门2型糖尿病的受益人自我保健的知识水平33材料和方法:进行了直接调查,以观察性,主动,横向和描述性设计进行。 div>在家庭医学咨询中与患者进行。 div>包括任何年龄段的男人和女人,其中2型糖尿病梅利托斯在访问期间自愿接受调查。 div>计算有限种群的样本量,并通过专家验证了一种仪器,并通过试验测试(α -Crombach = 0.73)。 div>统计分析:定量变量以中央(培养基)和分散度量(范围,标准偏差)和定性百分比表示。 div>知识水平将是定性的:不足,规律和良好。 div>该协议已获得研究和伦理委员会的批准注册R-2020-2804-034。 div>33平均年龄为56.28岁,S = 10,837,范围为28至85岁。 div> 58.5%(n = 121)是女性。 div> 与受益人的教育有关,我们观察到32.9%(n = 68)有高中和22.7%的中学(n = 47)。 div> 考虑受益人评估的成功次数,他们的平均为7.34,s = 2.2,范围为1至12。 知识水平为:以59.9%(n = 124)进行调节,其次是良好的31.9%(n = 66)。 div>33平均年龄为56.28岁,S = 10,837,范围为28至85岁。 div>58.5%(n = 121)是女性。 div>与受益人的教育有关,我们观察到32.9%(n = 68)有高中和22.7%的中学(n = 47)。 div>考虑受益人评估的成功次数,他们的平均为7.34,s = 2.2,范围为1至12。知识水平为:以59.9%(n = 124)进行调节,其次是良好的31.9%(n = 66)。 div>观察到教育水平与知识水平之间存在关联(n = 207,x2,gl = 10,p = 0.005)。 div>在调查结束时,他们问了一个问题,即他们如何看待他们对疾病的控制,而62.3%(n = 129)回答了他们认为这是规律的。 div>
一个占地40英亩的作物研究中心已指定用于种子繁殖计划和批量生产。在哈里夫季节,该单元也在本单元进行了一些与现场作物有关的部门研究项目。占地13英亩的园艺农作物果园,可容纳600多种植物,属于各种热带和亚热带水果,例如芒果,椰子,椰子,番石榴,Litchi,Sapota,Sapota,Sapota,Lemon,Aonla,Aonla,Aonla,Castard Apple,Pomegranate,Pomegranate等以及一些木制苹果,jamun,菠萝蜜,星果,火龙水果,苹果贝尔和苹果的样品植物主要是出于教育目的而开发的,其次是为了在不久的将来使用母果园的Scions建立一个后代果园。包括属于早期,中期和晚期的24种芒果,包括五种杂种,在高密度和正常间距种植园下生长。
教育部要求学校遵守其制定的儿童保护程序。我们的管理委员会已书面同意这样做。是所有教师都知道这些程序,我们已将这些程序以及我们如何遵守这些程序告知所有家长。是我们的指定联络人 (DLP) 是 Aideen Maher(校长)
具有有利的电化学特征的2D/2D异质结构(HTS)的生产具有挑战性,特别是对于半导体过渡金属二甲硅烷基(TMDS)而言。在这项工作中,我们引入了一项基于CO 2激光绘图仪的技术,用于实现包括氧化石墨烯(RGO)和2D-TMDS(MOS 2,WS 2,MOSE 2,MOSE 2和WSE 2)的HT膜。该策略依赖于激光诱导的异质结构(LIHTS)的产生,在辐照后,纳米材料在形态和化学结构中显示出变化,成为导电易于转移的纳米结构膜。LIHT在SEM,XPS,Raman和电化学上详细介绍了LIHT。激光处理诱导GOS转化为导电性高度去角质的RGO,并用均质分布的小型TMD/TM-氧化物纳米片装饰。所获得的独立式LIHT膜被用来在硝酸纤维素上构建独立的传感器,其中HT既可以用作传感器和传感表面。所提出的硝酸纤维素传感器制造过程是半自动化和可重现的,可以在相同的激光处理中生产多个HT膜,并且模具印刷可以定制设计。证明了不同分子(例如多巴胺(神经递质),儿茶素(黄酮醇)和过氧化氢)在电分析检测中的卓越性能,从而获得了生物学和农业样本中的纳米摩尔限制,并获得了高纤维抗性的纳摩尔限制。考虑到强大而快速的激光诱导的HT产生以及涂鸦所需模式的多功能性,提出的方法是通过可持续和可访问的策略开发电化学设备的破坏性技术。
尽管磁共振成像(MRI)对脑肿瘤分割和发现非常有帮助,但它在临床实践中缺乏某些方式。作为一种态度,预测绩效的退化是不可避免的。根据当前的实现,在模态特征的训练过程中,不同的模式被认为是独立的,彼此之间是独立的,但是它们是互补的。在本文中,考虑到不同方式对各种肿瘤区域的敏感性,我们提出了一种意识到类别的G组大量学习框架(称为GSS),以弥补本性模态模态提取阶段的信息。确切地说,在每个预测类别中,所有模态的预测构成了一个组,其中选择了最出色的灵敏度的预测作为组领导者。小组领导者与成员之间的合作努力以高的一致性和确定性为基础。作为我们的次要贡献,我们引入了一个随机面具,以减少可能的偏见。GSS采用标准培训策略而无需具体的建筑选择,因此可以轻松地插入现有的全模式内脑肿瘤分段中。在BRATS2020,BRATS2018和BRATS2015数据集上进行了明显的,广泛的实验表明,GSS可以平均证明现有的SOTA算法的性能平均为1.27-3.20%。该代码在https://github.com/qysgithubopen/gss上发布。
摘要 自我调节学习 (SRL) 是一种认知能力,在促进学生有效制定策略、监控和评估自己的学习行为方面具有明显意义。研究表明,缺乏自我调节学习技能会对学生的学业成绩产生负面影响。有效的数据驱动反馈和行动建议被认为对 SRL 至关重要,并显著影响学生的学习和表现。然而,向每个学生提供个性化反馈的任务对教师来说是一个重大挑战。此外,由于大多数课程的学生人数众多,为个性化建议确定适当的学习活动和资源的任务对教师来说也是一个重大挑战。为了应对这些挑战,一些研究已经探讨了基于学习分析的仪表板如何支持学生的自我调节。这些仪表板提供了一些关于学生成功和失败的可视化(作为反馈)。然而,虽然这种反馈可能有益,但它并没有提供有见地的信息或可行的建议来帮助学生提高学业水平。可解释的人工智能 (xAI) 方法已被提出来解释此类反馈并从预测模型中产生见解,重点关注学生在正在进行的课程中需要采取的相关行动以改进。此类智能活动可以作为数据驱动的行为改变建议提供给学生。本论文提供了一种基于 xAI 的方法,可以预测课程表现并计算信息反馈和可操作的建议,以促进学生的自我调节。与以前的研究不同,本论文将预测方法与 xAI 方法相结合,以分析和操纵学生的学习轨迹。目的是通过为该方法提供的预测提供深入的见解和解释,为学生提供详细的、数据驱动的可操作反馈。与单独的预测相比,该技术为学生提供了更实用和有用的知识。所提出的方法以仪表板的形式实施,以支持大学课程中学生的自我调节,并对其进行了评估以确定其对学生学业成绩的影响。结果表明,仪表板显着提高了学生的学习成绩并提高了他们的自我调节学习技能。此外,研究发现,所提出的方法提出的建议对学生的表现产生了积极影响,并帮助他们进行自我调节。
