理论的相关性自测试解决了我们是否可以从理论在特定信息处理任务中的表现中识别出理论中可实现的相关性集的问题。应用于量子理论,它旨在识别一种信息处理任务,该任务的最佳性能只有通过在任何因果结构中实现与量子理论相同的相关性的理论才能实现。在 [Phys. Rev. Lett. 125 060406 (2020)] 中,我们为此引入了一个候选任务,即自适应 CHSH 游戏。在这里,我们分析了在不同的广义概率理论中赢得这个游戏的最大概率。我们表明,具有由最小或最大张量积给出的联合状态空间的理论不如量子理论,然后再考虑其基本系统具有各种二维状态空间的理论中的其他张量积。对于这些,我们发现没有理论在自适应 CHSH 游戏中胜过量子理论,并证明在各种情况下都不可能恢复量子性能。这是迈向普遍解决方案的第一步,如果成功,将产生广泛的影响,特别是可以进行一项实验,排除所有可实现关联集与量子集不一致的理论。
量子密钥分发 (QKD) 是一种使用光的量子态作为可信信使的通信方法,这样,任何对信息传输的窃听企图都会被揭示为对状态进行测量过程的底层量子物理的一部分。1-3 虽然基本协议在其假设范围内是安全的,但实际的 QKD 系统可能会因原始协议方案的不完善实现、准备和检测设备不完善,或通过侧信道将信息泄露出两个通信伙伴所谓的安全范围而表现出漏洞。4-6 已经通过技术措施和高级协议识别和解决了这类漏洞。例如,光子数分裂攻击(其中单个光子被微弱的相干脉冲近似)、7,8 特洛伊木马攻击、3,9 各种定时攻击、10-12 以及各类信息泄漏到寄生自由度中。 QKD 系统最关键的漏洞可能是针对单光子探测器的探测器致盲/假态攻击。13 实验证明,这种攻击有效
纠缠量子系统具有非局部相关性,这种相关性比传统方法所能实现的更强。此特性使得执行自测试成为可能,这是量子功能验证的最强形式,它允许传统用户推断用于生成给定测量统计数据集的量子态和测量值。虽然量子态的自测试已被充分理解,但测量的自测试,尤其是在高维度中的自测试,仍然相对未被探索。在这里,我们证明每个真实的投影测量都可以进行自测试。我们的方法采用了这样一种想法,即现有的自测试可以扩展以验证其他不受信任的测量,这称为事后自测试。我们形式化了事后自测试的方法,并建立了可以应用它的条件。利用这个条件,我们为所有真实的投影测量构建了自测试。我们在此结果的基础上开发了一种迭代自测试技术,该技术提供了一种从现有自测试构建新自测试的清晰方法。
在与设备无关的量子信息方法中,可以仅根据记录的统计数据对给定任务的实现进行自测试,而无需所用设备的详细模型。尽管在实验上要求很高,但它为自然满足相关要求的先进量子技术提供了有吸引力的验证方案。在这项工作中,我们通过实验研究是否可以采用自测试协议来验证采用现代空分复用光纤技术构建的新量子设备是否正常运行。具体而言,我们考虑了 M. Farkas 和 J. Kaniewski (Phys. Rev. A 99, 032316) 的准备和测量协议,用于对维度 d > 2 中的相互无偏基 (MUB) 进行自测试测量。在我们的方案中,状态准备和测量阶段是使用多臂干涉仪实现的,该干涉仪由新的多芯光纤和相关组件构建。由于使用该技术实现了干涉仪光学模式的高度重叠,我们能够达到对两个四维 MUB 的实施进行自我测试所需的可见性。我们还量化了测量的两个操作量:(i) 与贝尔违规相关的不兼容性稳健性,以及 (ii) 可从结果中提取的随机性。由于 MUB 是几种量子信息协议的核心,我们的结果对于未来依赖空分复用光纤的量子工作具有实际意义。
自测试通常是指采取一组给定的观察到的相关性,这些相关性被认为是通过量子理论准确描述的过程产生的,并试图推断量子态和测量值。换句话说,它关心的是我们是否可以通过仅查看量子黑盒设备的输入输出行为来判断它们在做什么,并且已知在几种情况下是可能的。在这里,我们提出一个更普遍的问题:是否有可能对一个理论,特别是量子理论进行自测试?更准确地说,我们问在特定的因果结构中是否存在只能在任何情况下具有与量子力学相同相关性的理论中执行的任务。我们提出了这种相关性自测试的候选任务,并在一系列广义概率理论 (GPT) 中对其进行了分析,结果表明这些理论都没有比量子理论表现更好。我们的研究结果概括起来就是,对于这项任务来说,所有非量子 GPT 都严格劣于量子力学,这将为公理化量子理论提供一种新方法,并能够通过实验测试同时排除此类 GPT。
后端 VLSI 设计流程知识 - 库、平面规划、布局、布线、验证、测试。规格和原理图单元设计、Spice 模拟、电路元件、交流和直流分析、传输特性、瞬态响应、电流和电压噪声分析、设计规则、微米规则、设计的 Lambda 规则和设计规则检查、电路元件的制造方法、不同单元的布局设计、电路提取、电气规则检查、布局与原理图 (LVS)、布局后模拟和寄生提取、不同的设计问题(如天线效应、电迁移效应、体效应、电感和电容串扰和漏极穿通等)、设计格式、时序分析、反向注释和布局后模拟、DFT 指南、测试模式和内置自测试 (BIST)、ASIC 设计实施。
摘要:在这个数字世界中,测试构建的架构已成为一项具有挑战性的任务,而不是构建。测试过程包括高成本和功耗。许多研究都参与了高效测试电路的构建,其中 BIST 是高效测试电路之一。BIST [内置自测试] 提供了一个低功耗、低成本测试电路的平台。BIST 的构建是通过 MULTISTAGE LFSR 解码器电路完成的,该解码器电路通过向构建的架构提供随机和完整的输入序列来为测试电路开辟一条道路。还采用了解码逻辑,使其完美适用于容错架构。据说,由 BIST 和 MULTISTAGE lfsr 组成的路面是查找电路工作故障的有效技术,因此这被称为容错架构,所提出的架构的构建是在 Xilinx ISE 中使用 verilog HDL 语言完成的。索引术语——BIST、MULTISTAGE lfsr、解码逻辑、线性反馈移位寄存器 (LFSR)、基准电路。
摘要 本文全面探讨了量子信息背景下的半正定规划 (SDP) 技术。它研究了凸优化、对偶和 SDP 公式的数学基础,为解决量子系统中的优化挑战提供了坚实的理论框架。通过利用这些工具,研究人员和从业者可以表征经典和量子相关性、优化量子态并设计高效的量子算法和协议。本文还讨论了实现方面,例如 SDP 求解器和建模工具,从而能够在量子信息处理中有效使用优化技术。本文提出的见解和方法已被证明有助于推动量子信息领域的发展,促进新型通信协议、自测试方法的开发以及对量子纠缠的更深入了解。
我们提出了一个量子自测试协议来认证涉及马约拉纳费米子模式的费米子宇称测量。我们表明,观察到一组理想测量统计数据意味着实施的马约拉纳费米子宇称算子的反交换性,这是马约拉纳检测的必要先决条件。我们的协议对实验误差具有鲁棒性。我们获得了与误差呈线性关系的状态和测量算子的保真度下限。我们建议根据语境见证 W 来分析实验结果,对于任何经典数据概率模型,它都满足 ⟨ W ⟩≤ 3。不等式的违反证明了量子语境性,与最大理想值 ⟨ W ⟩ = 5 的接近程度表示对马约拉纳费米子检测的置信度。
Rajesh Pendurkar 目前是 Capgemini Engineering 的工程总监,负责推动 DFT 架构以提供创新的硅片解决方案。此前,他曾在英特尔、博通和 Sun Microsystems 担任管理和工程职位。他的研究兴趣包括调试设计、内置自测试、优化算法和机器学习。他创立了 ASIC 设计和测试咨询公司 TriSquare Sense。他是加州大学圣克鲁斯分校的兼职教员。他在《IEEE 集成电路计算机辅助设计学报》等期刊和国际测试会议 (ITC) 等会议上发表了 20 多篇论文。他拥有 6 项专利,是 IEEE 1687 标准委员会工作组的成员。他在佐治亚理工学院获得电气和计算机工程博士学位,并在南加州大学马歇尔商学院获得工商管理硕士学位。