精确空投是一种技术,其所需能力变得更加精确,因为战斗情况需要更高的精确度。弹道和翼伞型运载工具没有能力在城市战斗情况下持续向特定屋顶投送有效载荷。滑翔自转旋翼机运载平台已被研究作为实现更高空投性能的手段。自转旋翼机具有与翼伞相似的滑翔特性,但具有更好的抗风能力和控制能力。已经构建了基于动量和叶片元素直升机理论的初步模拟。已经开发了一种使用多环闭合策略的经典控制器,该控制器使用新的非线性制导律来遵循由考虑初始条件的算法生成的路径。扩展卡尔曼滤波器用于状态估计。模拟结果显示一致的精度约为 5 英尺,最终位置误差很少超过 10 英尺。
摘要 迈出了空中行星探索的第一步。Ingenuity 显示出非常有希望的结果,新的任务已经在进行中。旋翼机能够飞行。这种能力可用于支持进入、下降和着陆的最后阶段。因此,可以缩小质量和复杂性。自转是一种下降方法。它描述了无动力下降和着陆,通常由直升机在发动机故障时执行。建议使用 MAPLE 来测试这些程序并了解其他行星上的自转。在这一系列实验中,使用了 Ingenuity 直升机。Ingenuity 将在继续正常飞行之前自转“空中着陆”。最终,收集的数据将有助于了解火星上的自转及其在行星际探索中的应用。
在人类功能,病变和动物数据中抽象的多行证据表明,小脑角色,尤其是Crus I,Crus II和Lobule VIIB,在认知功能中。然而,缺少将认知功能的不同方面映射到小脑结构。我们分析了来自健康脑网络(HBN)的结构神经影像学数据。小脑包裹。规范相关分析(CCA)检查了与认知功能相关的区域灰质体积(GMV)差异(用NIH工具箱认知域,NIH-TB量化),对心理病理学的严重程度,年龄,性别,性别,性别,扫描位置和内部体积进行了考虑。多变量CCA发现了两个需要潜在认知规范(NIH-TB子量表)和脑规范变量(小脑GMV和颅内体积,ICV)的两个组件之间的显着相关性。组件对应于部分共享的小脑 - 认知功能关系,其中的第一个映射涉及认知灵活性(r = 0.89),处理速度(r = 0.65)以及与CRUS II(r = 0.57)和LOBULE X(r = 0.59)的区域GMV相关的工作记忆(r = 0.52),包括crus x(r = 0.59)。 r = 0.49)与工作记忆相关(r = 0.51)。我们展示了在转诊样品中认知功能的小脑形态的结构性典型化的证据。
事后看来,除了空间段信息(哪些卫星是健康的、它们在哪里、它们的自转是什么以及它们的导航信息是什么)之外,绝对信息(时间和频率)高度依赖于对用户运动(接收器移动的速度和方向)和周围环境(建筑物对卫星信号的阻挡、树冠对信号衰减或其他移动元素(如汽车或行人)的干扰)的了解。所有这些都是服务器无法感知的本地环境信息。
耦合飞行动力学、空气力学和气动声学模拟 § 线性化、稳定性、降阶、控制 § 实时空气力学和声学 § 实时交互空气动力学 § 旋翼飞行器(直升机、倾转旋翼机等)§ 扑翼微型飞行器(昆虫、鸟类) 先进飞行控制系统 § 旋翼机飞行控制系统 § 主动降噪飞行控制律 § 主动旋翼振动飞行控制律 感知建模和飞行员提示方法 § 全身触觉反馈 § 多模态飞行员建模 § 自转/舰载着陆提示算法
RealFlight 8 还提供了各种各样的工具来帮助您了解如何使用该程序以及如何提高您的 R/C 驾驶技能。本详尽的手册解释了每个功能和选项;以及如何使用它们。我们提供许多培训辅助和帮助,包括(但不限于):我们的虚拟飞行指导、直升机悬停训练器、飞机悬停训练器、起飞和着陆训练器、直升机自转训练器和直升机定位训练器。这些有用的培训辅助工具提供了即时学习机会,我们鼓励您充分利用它们。没有其他 R/C 模拟器能进一步丰富您的 R/C 体验。
RealFlight 8 还提供各种工具来帮助您了解如何使用该程序以及如何提高您的 R/C 驾驶技能。这本详尽的手册解释了每个功能和选项;以及如何使用它们。我们提供许多培训辅助和帮助,包括(但不限于):我们的虚拟飞行指导、直升机悬停训练器、飞机悬停训练器、起飞和着陆训练器、直升机自转训练器和直升机定位训练器。这些有用的培训辅助工具提供了即时学习机会,我们鼓励您充分利用它们。没有其他 R/C 模拟器能进一步丰富您的 R/C 体验。
如果拍摄照片的飞行员保持原位并立即将总距减小到最低位置,他可能已经成功完成了紧急迫降。这是一个很好的程序,因为在自转时,降低机头以获得空速会减少作用在旋翼盘上的空气量并进一步降低旋翼转速。让直升机垂直下降会导致更多的空气通过旋翼盘向上移动并恢复一些旋翼转速。然后,飞行员利用旋翼转速中额外储存的动能来减慢直升机在接触地面之前的下降速度。这是通过在接触地面之前立即拉全总距来实现的,以产生短暂的升力爆发。时机至关重要,这样直升机才能以最低速度接触地面,从而提高乘客的生存能力。