这项工作解决了未知机器人过渡模型下多机器人协调的问题,以确保按时间窗口时间窗口逻辑指定的任务对用户定义的概率阈值满意。我们提出了一个BI级框架,该框架集成了(i)高级任务分配,其中根据机器人的估计任务完成概率和预期奖励分配任务,以及(ii)在履行分配的任务时,机器人独立优化了辅助奖励。要处理机器人动力学中的不确定性,我们的方法利用实时任务执行数据来迭代地完善预期的任务完成概率和奖励,从而无需显式机器人过渡模型即可自适应任务分配。我们从理论上验证了所提出的算法,表明任务分配具有很高的置信度达到所需的概率阈值。最后,我们通过全面的模拟证明了框架的有效性。
摘要 - 自治车辆是解决大多数运输问题的解决方案,例如安全性,舒适性和效率。转向控制是实现自动驾驶的主要重要任务之一。模型预测控制(MPC)是该任务的效果控制器之一,因为其最佳性能和处理约束的能力。本文提出了用于路径跟踪任务的自适应MPC控制器(AMPC),并提出了一种改进的PSO算法,以优化AMPC参数。使用查找表方法在线实现参数改编。通过模拟评估了提出的AMPC性能,并将其与经典的MPC和Pure Pursuit控制器进行了比较。索引项 - 自主车,优化,模型预控制,自适应控制,粒子群优化。
文章历史:在过去的十年中,已经开发了各种基于速度障碍的方法,以避免动态环境中的碰撞。但是,这些方法通常仅限于处理几个障碍,连续的相遇或缺乏安全地形的安全保证。本文提出了使用速度障碍法的自适应碰撞避免策略,旨在使自主火星流浪者能够安全地驾驶动态和不确定的地形,同时避免多个障碍。该策略构建了自适应速度锥体,考虑了动态障碍和地形特征,从而确保了连续的安全性,同时将漫游者引导到其航路点。我们在模拟的MARS探索方案中实施了策略,代表了具有挑战性的多OSTACLAS任务。模拟结果表明,我们的方法通过增加安全距离来增强性能,使其非常适合自主行星探索,在这种情况下,避免碰撞对于任务成功至关重要。
抽象背景:Boltzmann机器是基于能量的模型,已显示出对进化相关蛋白质和RNA家族的域的准确统计描述。它们是根据局部偏见的参数化,该局部偏向残留物保守性,以及对残基之间的上皮共进化的成对项。从模型参数中,可以提取目标域的三维触点图的准确预测。最近,这些模型的准确性也已根据它们在预测突变效应和在计算机功能序列中产生的能力方面进行了评估。结果:我们对Boltzmann机器学习的自适应实现,ADABMDCA通常可以应用于蛋白质和RNA家族,并根据输入数据的复杂性以及用户需求完成了几个学习设置。该代码可在https://github。com/anna-pa-m/adabm DCA上完全获得。举例来说,我们已经学习了三台Boltzmann机器模式 - Kunitz和beta-lactamase2蛋白结构域以及TPP-riboswitch RNA结构域。结论:ADABMDCA学到的模型与最先进的技术在此任务中获得的模型相当,就推论触点图的质量以及合成生成的序列而言。此外,该代码同时实现平衡和平衡性学习,这可以在平衡时进行准确而无损的训练,并在统一时间上过于态度,并允许使用基于信息的标准来修剪不相关的参数。
基于脑电图 (EEG) 的脑机接口 (BCI) 通常被认为是针对运动障碍用户的有前途的辅助技术,但由于在现实生活中的可靠性低,在实验室外仍很少使用。因此,需要设计可供最终用户(例如严重运动障碍者)在实验室外使用的长期可靠的 BCI。因此,我们提出并评估了一种基于多类心理任务 (MT) 的 BCI 设计,用于为 CYBATHLON BCI 系列 2019 的四肢瘫痪用户进行纵向训练(3 个月内 20 次训练)。在本次 BCI 锦标赛中,四肢瘫痪的飞行员在赛车游戏中用精神驾驶虚拟汽车。我们旨在将渐进式用户 MT-BCI 训练与基于自适应黎曼分类器的新设计的机器学习流程相结合,该分类器已被证明有望在现实生活中应用。我们遵循两步训练过程:前 11 个课程用于训练用户通过执行两个认知任务(休息和心理减法)或两个运动想象任务(左手和右手)来控制 2 类 MT-BCI。第二个训练步骤(剩余 9 个课程)应用了自适应、独立于会话的黎曼分类器,该分类器结合了之前使用的所有 4 个 MT 类别。此外,由于我们的黎曼分类器以无监督的方式逐步更新,因此它将捕获会话内和会话之间的非平稳性。实验证据证实了这种方法的有效性。也就是说,与初始课程相比,训练结束时的分类准确率提高了约 30%。我们还研究了这种性能改进的神经相关性。使用新提出的 BCI 用户学习指标,我们可以显示我们的用户学会了通过产生越来越匹配 BCI 分类器训练数据分布的 EEG 信号来改善他的 BCI 控制,而不是通过改善他的 EEG 类别辨别。然而,由此产生的改进只对同步(基于提示)BCI 有效,并没有转化为 CYBATHLON BCI 游戏性能的提高。为了克服这个问题
金黄色葡萄球菌CAS 9(SACAS 9)是RNA引导的内核ASE,其靶向与原始探针相邻的互补DNA相邻的邻接基序(PAM)进行裂解。其小尺寸促进了体内递送的各种生物体基因组编辑。在此,使用单分子和集合方法,我们系统地研究了SACAS 9与DNA相互作用的基础机理。我们发现SACAS 9的DNA结合和裂解需要分别与指导RNA的PAM -Proximal DNA的6-和18 -bp。这些活性是由三元复合物之间的两个稳定的相互作用介导的,其中一种稳定的相互作用位于PAM的大约6 bp,而不是DNA上Sacas 9的明显足迹。值得注意的是,原始间隔物内部的另一个相互作用显着强,因此构成了DNA结合的SACAS 9持续块对DNA跟踪电动机。有趣的是,在裂解后,萨卡斯9自主释放了pAM-DESTAL DNA,同时保持与PAM的结合。这种部分DNA释放立即废除了其与原始探针DNA的强烈相互作用,因此促进了其随后与PAM的解离。总体而言,这些数据提供了对SACAS 9的动态理解,并指导其有效的应用。
摘要 - 安全至关重要的感知系统都需要可靠的不确定性量化和原则上的弃权机械,以在不同的操作条件下保持安全性。我们提出了一个新颖的双阈值共形框架,该框架可提供统计保证的不确定性估计,同时在高风险场景中实现选择性预测。我们的ap-proch唯一结合了共形阈值,以确保有效的预测集和通过ROC分析优化的弃用阈值,从而提供无分布的覆盖范围保证(≥1-α),同时识别不可靠的预测。通过对CIFAR-100,ImagEnet1k和ModelNet40数据集进行全面评估,我们在不同的环境扰动下展示了跨摄像头和激光痛的较高鲁棒性。该框架在严重的条件下达到了出色的检测性能(AUC:0.993→0.995),同时保持高覆盖率(> 90.0%),并实现适应性弃权(13.5%→63.4%±0.5),作为环境严重程度。对于基于激光雷达的感知,我们的方法表现出特别强大的表现,保持了强大的共识(> 84.5%),同时适当弃权不可靠的预测。值得注意的是,该框架在重扰动下显示出显着的稳定性,检测性能(AUC:0.995±0.001)在所有模式中的现有方法都显着超过现有方法。我们的统一方法弥合了理论保证和实际部署需求之间的差距,为在挑战性的现实世界中运行的安全至关重要的自主系统提供了强有力的解决方案。代码可在https://github.com/divake/conformal预测基于传感器的信任可达检测
摘要。目的。适应性是脑机接口 (BCI) 领域的一大挑战。这需要机器能够最佳地表达有关用户意图及其自身行为的推理。适应性可以在多个维度上进行,因此需要一个通用且灵活的框架。方法。我们采用最全面的大脑 (自适应) 功能计算方法之一:主动推理 (AI) 框架。它需要一个与机器交互的用户的显式 (概率) 模型,这里涉及 P300 拼写任务。这采用离散输入输出状态空间模型的形式,建立机器的 (i) 观察值(例如 P300 或错误电位)、(ii) 表示(用户拼写或暂停的意图)和 (iii) 操作(闪烁、拼写或关闭应用程序)之间的联系。主要结果。使用来自 18 名受试者的真实 EEG 数据进行模拟,结果表明 AI 能够显著提高比特率 (17%),优于最先进的方法,例如动态停止。意义重大。由于其灵活性,该模型不仅能够实现最佳(动态)停止,还能实现最佳闪烁(即主动采样)、自动纠错以及在用户不再看屏幕时关闭。重要的是,这种方法使机器能够灵活地在所有这些可能的操作之间进行仲裁。我们将 AI 展示为一个统一的通用框架,用于在给定的 BCI 环境中实现灵活的交互。
加拿大金斯敦皇后大学癌症研究所的生物医学和分子科学系; B宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州佩雷尔曼高级医学中心泌尿外科系; c不列颠哥伦比亚大学泌尿科科学系,不列颠哥伦比亚省温哥华,加拿大; D德国弗莱堡大学医学与医学中心的输血医学和基因治疗研究所; E分司血液学/肿瘤学,Tisch Cancer Institute,伊坎医学院,美国纽约州纽约州西奈山; F美国医学博士NCI,NIH,NIH,NIH,美国马里兰州癌症研究中心免疫肿瘤中心; G.UniversitéParisCité,Institut Cochin,Inserm U1016,CNRS UMR 8104,巴黎,75014,法国; h粘膜炎症和免疫力,法国巴黎75015 Institut Pasteur学院,法国巴黎; I美国德克萨斯州休斯顿市德克萨斯大学医学博士安德森癌症中心外科泌尿外科系;加拿大QC蒙特利尔麦吉尔大学卫生中心泌尿外科J泌尿外科; k加拿大金斯敦皇后大学医学院泌尿外科系; l德克萨斯大学医学博士安德森癌症中心,美国德克萨斯州休斯敦的杰纳特里医学肿瘤学系
尽管 QKD 链路可以达到传统方式无法达到的安全级别,但由于光纤损耗会随着距离的增加而呈指数级增长,因此 QKD 链路在全球范围内的实施面临着关键限制。由于量子中继器技术不够成熟,地面 QKD 装置的可达距离最多只能限制在几百公里 [1-3]。因此,卫星中继被认为是实现洲际链路非常有前途的解决方案 [4],多年来,已发表了多项关于自由空间卫星 QKD 的理论和实验可行性研究 [5-11]。然而,特别是对于卫星到地面的链路,大气湍流对信号传播的影响需要优化单模光纤 (SMF) 中的光耦合,这对于与地面站连接必不可少。