使用Proxtraq和MobileTraq Apps/Portals管理访问,从而从一个集中式平台启用了企业安全管理。生成详细的审核跟踪,以监视用户活动和锁定锁定尝试,并通过远程注册RFID卡和智能手机简化操作。
Precision 3D打印技术和材料的进步具有戏剧性的改进的原型制作技术,从而使生物医学平台的世界广泛更快,更有效。[1]微分辨率3D打印机可以通过使用微铣削技术来制造高度复杂的质量可实现部分,而功能不可能提高。[2]因此,微尺度3D打印技术在生物医学领域中用于开发简单有效的透射药物输送平台(包括微针(MNS)),最近由于克服了克服传统MN的几何局限而引起了人们的注意。[3]由微米尺度聚合物针制成的可溶解的MN斑块是一种患者友好型的透皮药物输送系统,能够以最小的侵入性将活性化合物延伸到皮肤中。[4]然而,由于其锥形几何形状,常规MN并不能完全穿透皮肤,从而导致负载货物的递送精度较低,[5]对它们在药物领域中的临床应用和商业化产生了负面影响。[6]因此,已经开发出各种MN施加器,箭头微结构,微柱基和多步制造方法,以克服有限的Contectional MN的交付精度。[7]但是,这些方法的制造复杂性限制了它们在制药行业的批量生产和应用。因此,迫切需要开发一个简单且可实现的MN平台,能够准确交付负载的货物。在此,使用数字灯处理(DLP)基于芯片的图3D打印机用于制造一种可在皮肤组织中完全插入和锁定的新型自锁的MN,从而显着提高了Microuse递送精度,从而克服了传统MN的限制。制造简单性和质量增强性主要是在自我锁定的MN发展过程中主要集中在一个高度精确的透皮药物输送平台上。简而
摘要 — 我们描述了一种新型机电一体化机器人夹持器的设计概念和第一个原型,该夹持器旨在安装在人形机器人上,以实现牢固(即锁定)和稳健的抓握。这种抓握可以理想地支持复杂的多接触运动,例如爬梯子或操纵复杂工具,同时具有节能效果。为此,我们提出了一种解决方案,即设计一种智能自锁欠驱动机构,该机构与执行器并联安装,当实现所需的抓握时自动触发。该设计通过差速齿轮利用夹持器和制动器之间的可调功率分配。我们的夹持器具有自适应、牢固抓握和节能功能的优势,并通过原型夹持器进行了实验。
摘要 — 我们描述了一种新型机电一体化机器人夹持器的设计概念和第一个原型,该夹持器旨在安装在人形机器人上,以实现牢固(即锁定)和稳健的抓握。这种抓握可以理想地支持复杂的多接触运动,例如爬梯子或操纵复杂工具,同时节省能源。为此,我们提出了一种解决方案,即设计一种智能自锁欠驱动机构,该机构与执行器并联安装,当实现所需的抓握时自动触发。该设计通过差速齿轮利用夹持器和制动器之间的可调功率分配。我们的夹持器具有自适应、牢固抓握和节能的优势,并通过原型夹持器进行了实验。