摘要:光系统Ⅱ是叶绿体的重要组成部分,其修复过程对缓解光抑制至关重要,对提高植物的抗逆性和光合效率具有重要意义。致死基因被广泛应用于基因编辑的效率检测和方法改进。本研究在油菜中发现了一个自然发生的致死突变体7-521Y,该突变体子叶黄化,受双隐性基因cyd1和cyd2控制。通过全基因组重测序和图位克隆相结合的方法,利用15 167个黄化个体将CYD1精细定位到29 kb的基因组区域上。通过对转基因进行共遗传分析和功能验证,确定BnaC06.FtsH1为目的基因;它编码一个丝状温度敏感蛋白H 1 (FtsH1)水解酶,能够降解拟南芥中受损的PSII D1。BnaC06.FtsH1在甘蓝型油菜的子叶、叶片和花中表达量较高,且定位于叶绿体中。此外,在7-521Y中,FtsH上游调控基因EngA的表达上调,D1的表达下调。FtsH1和FtsH5的双突变体在甘蓝型油菜中是致死的。通过系统发育分析发现,在芸苔属植物中FtsH5的丢失,剩下的FtsH1是PSII修复周期所必需的。CYD2可能是甘蓝型油菜A07染色体上FtsH1的同源基因。我们的研究为致死突变体提供了新的见解,其发现可能有助于提高油菜 PSII 修复周期的效率和生物量积累。
我们提出了一种统一的理论,可以解释癌症复发,治疗性抗性和致死性。该理论的基础是形成了多倍体和非整倍性癌细胞,多层酶癌细胞(PACC),它们通过进入细胞周期停滞状态,避免了全身治疗的毒性作用。该理论与已经发生的经典相关的致癌突变无关。PACC通常被视为衰老或垂死的细胞。我们的理论指出,治疗性抗性是由PACC形成驱动的,PACC形成是通过访问多倍体程序来启用的,该程序允许非整倍体癌细胞将其基因组含量加倍,然后进入非分散的细胞状态以保护DNA完整性并确保细胞存活。消除压力后,例如化学疗法,PACC会经过解倍倍化化并产生抗性后代,从而构成了肿瘤内大部分癌细胞。
摘要。合成致死(SL)的相互作用是两个基因或功能实体之间的功能关系,其中任何一个实体的丧失都是可行的,但两者的丧失都是致命的。这样的对可用于开发具有较少侧面作用并减少过度治疗的靶向抗癌疗法。但是,发现临床上可行的SL相互作用仍然具有挑战性。利用无病和癌性数据的大规模统一的基因表达数据,我们根据统计假设检验设计了一种新技术,称为Aster(通过与t发行的无疾病的无效G e nthetic杀伤性进行静脉疾病(对S ynthetic杀伤力进行,无效的疾病无效的G e noric g e noric g e noric和T r anscriptomic and t r anscriptomic数据)。对于大规模多个假设检验,我们开发了一个称为Aster ++的扩展,该扩展可以在假设检验框架内利用其他输入基因特征。我们的广泛实验表明,在准确地识别可在胃和乳腺癌中可以治疗的SL对中,Aster的效果。
。CC-BY-NC-ND 4.0 国际许可证(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。
黏连蛋白亚基 STAG2 已成为人类癌症中反复失活的肿瘤抑制因子。最近的研究使用候选方法揭示了 STAG2 与其同源物 STAG1 之间的合成致死相互作用。为了系统地探究 STAG2 缺失下的遗传脆弱性,我们在同源细胞系中进行了全基因组 CRISPR 筛选,并确定 STAG1 是 STAG2 缺陷细胞中最突出和最具选择性的依赖性。使用可诱导的降解系统,我们表明 STAG1 蛋白的化学遗传降解会导致 STAG2 缺陷细胞中姐妹染色单体黏连性丧失和细胞快速死亡,而 STAG2 野生型细胞则不会受到影响。生化分析和 X 射线晶体学确定了与黏连蛋白复合物的 RAD21 亚基相互作用的 STAG1 区域。消除这种相互作用的 STAG1 突变会选择性地损害 STAG2 缺陷细胞的生存能力。我们的工作强调了 STAG1 的降解和抑制其与 RAD21 的相互作用是一种有前途的治疗策略。这些发现为开发 STAG1 导向的小分子以利用 STAG2 突变肿瘤中的合成致死性奠定了基础。
未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者(此版本于 2020 年 5 月 26 日发布。;https://doi.org/10.1101/2020.05.25.112896 doi:bioRxiv preprint
摘要:放线菌伴生细胞致死性膨胀毒素 (Cdt) 可诱导淋巴细胞发生细胞周期停滞和凋亡;毒性取决于活性 Cdt 亚基 CdtB。我们现在证明,p21 CIP1 / WAF1 对 Cdt 诱导的细胞凋亡至关重要。Cdt 可诱导淋巴细胞系 Jurkat 和 MyLa 以及原代人类淋巴细胞中 p21 CIP1 / WAF1 水平升高。这些增加取决于 CdtB 作为磷脂酰肌醇 (PI) 3,4,5-三磷酸 (PIP3) 磷酸酶发挥作用的能力。值得注意的是,Cdt 诱导的 p21 CIP1 / WAF1 水平升高伴随着磷酸化 p21 CIP1 / WAF1 水平的显著下降。通过双管齐下的方法来防止这些变化,评估了 Cdt 诱导的 p21 CIP1 / WAF1 增加的重要性;与新型 p21 CIP1 / WAF1 抑制剂 UC2288 预孵育,并使用成簇的规律间隔短回文重复序列 (CRISPR) / cas9 基因编辑开发 p21 CIP1 / WAF1 缺陷细胞系 (Jurkat p21 − )。UC2288 阻断了毒素诱导的 p21 CIP1 / WAF1 增加,用这种抑制剂处理的 Jurkat WT 细胞对 Cdt 诱导的细胞凋亡的敏感性降低。同样,Jurkat p21 − 细胞未能发生毒素诱导的细胞凋亡。通过证明 Cdt 诱导的促凋亡蛋白 Bid、Bax 和 Bak 水平的增加依赖于 p21 CIP1 / WAF1,进一步证实了 Cdt、p21 CIP1 / WAF1 和细胞凋亡之间的联系,因为这些变化在 Jurkat p21 − 细胞中没有观察到。最后,我们确定 p21 CIP1 / WAF1 的增加依赖于毒素诱导的伴侣热休克蛋白 (HSP) 90 水平和活性的增加。我们提出 p21 CIP1 / WAF1 在介导 Cdt 诱导的毒性中起着关键的促凋亡作用。