摘要:各种疾病,包括癌症、与年龄相关的疾病和急性肝功能衰竭,都与致癌基因 MYC 有关。动物试验和临床试验表明,当 MYC 失活时可以实现持续的肿瘤体积缩小,目前正在开发包括 MYC 抑制剂在内的不同治疗剂组合。在本综述中,我们首先总结了 MYC 癌蛋白在癌症治疗中的多种生物学功能,强调 MYC/MAX、MIZ1/MYC/MAX 和 MAD (MNT)/MAX 复合物的平衡点在癌症治疗中具有进一步的潜力,可用于抑制 MYC 致癌基因的表达及其在肿瘤发生中的作用。我们还讨论了 MYC 在各种细胞癌症过程中的多功能能力,包括其对免疫反应、代谢、细胞周期、细胞凋亡、自噬、细胞焦亡、转移、血管生成、多药耐药性和肠道菌群的影响。此外,我们总结了 MYC 治疗专利状况,并强调了 MYC 作为可用药靶点的潜力,使用草药调节剂。最后,我们描述了生物医学研究中的待决挑战和未来前景,涉及开发调节 MYC 或其靶基因的治疗方法。患有由 MYC 信号驱动的癌症的患者可能会受益于针对这些途径的治疗,这可以延缓癌细胞生长并恢复抗肿瘤免疫反应。关键词:MYC、癌症、免疫反应、多药耐药性、天然产物、草药 1.简介 MYC 是一种“全局”转录因子,可导致多种疾病,包括癌症、与年龄相关的疾病和急性肝功能衰竭等。由于其参与多种细胞过程,包括 DNA 修复、蛋白质翻译、细胞周期停滞、应激反应、细胞增殖和分化、程序性细胞死亡、免疫反应调节和
2. 厦门大学生命科学学院,福建省厦门市 361102。 3. 厦门大学肿瘤研究中心,福建省厦门市 361102。 § 这些作者对这项工作做出了同等贡献。 * 通讯作者。 通讯作者: 王红瑞博士 厦门大学生命科学学院,福建省厦门市翔安区 361102,中国 电话:+86-592-2181601 电子邮件:wanghr@xmu.edu.cn 邓先明博士 厦门大学生命科学学院,福建省厦门市翔安区 361102,中国 电话:+86-592- 2184180 电子邮件:xmdeng@xmu.edu.cn
摘要 线粒体是一种在能量产生、细胞质蛋白质降解和细胞死亡中起重要作用的细胞器。线粒体自噬是一种自噬过程,可特异性地清除受损的线粒体并维持其体内平衡。新出现的证据表明,线粒体自噬参与许多生理过程,包括细胞体内平衡、细胞分化和神经保护。在这篇综述中,我们描述了哺乳动物和酵母中线粒体自噬的调控机制,并重点介绍了其在致癌作用和耐药性方面的最新进展。最后,我们专门用一节来描述线粒体自噬在抗癌治疗中的作用,这是一个新领域,提供了一种精确且有希望的策略。关键词:线粒体自噬、机制、致癌作用、耐药性、抗癌治疗
结直肠癌(CRC)是世界上最普遍的癌症类型之一,在美国的癌症死亡中排名第二。尽管最近的筛查和治疗有所改善,但与CRC相关的死亡人数仍然非常重要。CRC治疗所涉及的复杂性源于异常途径之间的多个致癌突变和串扰。这要求使用先进的分子遗传学来了解负责该癌症的潜在途径相互作用。在本文中,我们从文献中构建了CRC途径,并使用有关健康与肿瘤结肠细胞的现有公共数据集构建了CRC途径,我们确定了突变的基因和途径,并且可能对疾病进展负有影响。然后,我们在CRC途径中引入药物,并使用布尔建模技术,推断出产生最大细胞死亡的药物组合。我们的理论模拟证明了Cryptanshinone(一种涉及中国草药衍生物)的有效性,它通过靶向关键的致癌突变和增强细胞死亡而实现。最后,我们使用HT29和HCT116人类结直肠癌细胞系上的湿实验室实验验证了理论结果。
fi g u r e 1在异种移植小鼠模型中分子靶向药物和VEGFR2阻滞的组合。用PC-9,H3255,H3122,ABC-11或ABC-20细胞移植小鼠。分子靶向剂每周口服5次。DC101每周两次腹膜内(10 mg/kg/d)进行腹膜内施用。A,B,携带PC-9或H3255肿瘤的小鼠用媒介物,Erlotinib(30 mg/kg/d),DC101或Erlotinib加上DC101组合处理。在H3255移植的小鼠中,从第21天开始将erlotinib剂量降低至15 mg/kg/d,并且从第53天开始停止治疗。c,d,带有H3122和ABC-11的小鼠用媒介物,Alectinib(10 mg/ kg/ d),DC101或Alectinib Plus DC101组合处理。e,携带ABC-20肿瘤的小鼠用媒介物,crizotinib(50 mg/kg/d),DC101或Crizotinib加上DC101组合治疗。错误条表示标准错误; * p <.05
图 1 吖啶黄 (ACF) 对 K562 细胞生长和存活的影响。A,用不同浓度的 ACF 或未用 ACF (PBS) 处理 K562 细胞 72 小时。通过 MTT 和台盼蓝染料排斥试验确定细胞活力(数据以三次独立实验的平均值 ± SD 表示)。标明了 IC 50 值。B,用不同浓度的原黄素处理细胞,通过 MTT 试验确定活细胞百分比(数据以三次独立实验的平均值 ± SD 表示)。显示了原黄素和台盼蓝的化学结构。C,用未用 ACF (PBS) 或用浓度增加的 ACF 培养 72 小时的细胞用 AnnexinV 和 APC 染色,通过流式细胞术确定凋亡细胞百分比。显示了一个代表性实验(左图)。数据以三次独立实验的平均值 ± SD 表示。使用双向方差分析和 Holm-Sidak 多重比较检验来检验 ACF 处理对细胞凋亡的重要性 (* P < 0.05; *** P < 0.0001)。D,使用所示抗体 (n = 3) 通过蛋白质印迹法分析培养 48 小时或 72 小时且 ACF 浓度不断增加的 K562 细胞的蛋白质提取物。肌动蛋白作为上样对照
图 1 吖啶黄 (ACF) 对 K562 细胞生长和存活的影响。A,用不同浓度的 ACF 或未用 ACF (PBS) 处理 K562 细胞 72 小时。通过 MTT 和台盼蓝染料排斥试验确定细胞活力(数据以三次独立实验的平均值 ± SD 表示)。标明了 IC 50 值。B,用不同浓度的原黄素处理细胞,通过 MTT 试验确定活细胞百分比(数据以三次独立实验的平均值 ± SD 表示)。显示了原黄素和台盼蓝的化学结构。C,用未用 ACF (PBS) 或用浓度增加的 ACF 培养 72 小时的细胞用 AnnexinV 和 APC 染色,通过流式细胞术确定凋亡细胞百分比。显示了一个代表性实验(左图)。数据以三次独立实验的平均值 ± SD 表示。使用双向方差分析和 Holm-Sidak 多重比较检验来检验 ACF 处理对细胞凋亡的重要性 (* P < 0.05; *** P < 0.0001)。D,使用所示抗体 (n = 3) 通过蛋白质印迹法分析培养 48 小时或 72 小时且 ACF 浓度不断增加的 K562 细胞的蛋白质提取物。肌动蛋白作为上样对照
TNBC患者的大多数临床死亡都是由于化学抗性和侵略性转移造成的,非洲年轻妇女的患病率很高。虽然肿瘤驱动器众多并且变化了,但转移过渡的驱动因素在很大程度上尚不清楚。在这里,我们发现了TNBC肿瘤在TRIM37网络上的分子依赖性,该网络使肿瘤细胞能够抵抗化学治疗和转移性应激。TRIM37指导的组蛋白H2A单泛素化强化DNA修复的变化,从而使TP53突变的TNBC细胞具有抗化疗的抗性。化学治疗药物通过ATM/E2F1/STAT信号触发了正反馈回路,从而在化学抗性癌细胞中扩增了TRIM37网络。TRIM37的高表达诱导转移性表型的转录组变化特征,并且对TRIM37的抑制显着降低了TNBC细胞的体内倾向。选择性递送TIM37特异性反义寡核苷酸,使用抗叶酸受体1-结合的纳米颗粒与化学疗法结合使用,在自发转移性鼠模型中抑制了肺转移。总的来说,这些发现将TRIM37建立为临床相关的目标,并提供了治疗干预的机会。
增强子-基因通讯依赖于拓扑关联域 (TAD) 和由 CCCTC 结合因子 (CTCF) 绝缘子强制执行的边界,但其潜在的结构和机制仍然存在争议。在这里,我们研究了一种通常隔离成纤维细胞生长因子 (FGF) 致癌基因但在胃肠道间质瘤 (GIST) 中被 DNA 高甲基化破坏的边界。该边界包含一系列 CTCF 位点,可强制相邻的 TAD,一个包含 FGF 基因,另一个包含 ANO1 及其推定的增强子,它们在 GIST 及其可能的起源细胞中具有特异性活性。我们表明,边界中四个 CTCF 基序的协调破坏会融合相邻的 TAD,允许 ANO1 增强子接触 FGF3,并导致其强烈诱导。高分辨率微 C 图揭示了 ANO1 增强子和 FGF3 启动子中的转录起始位点之间的特定接触,这种接触与 FGF3 诱导呈定量关系,因此接触频率的适度变化会导致表达的强烈变化,与因果关系一致。