自从发现 [1,2] 以来,EEG 已越来越多地应用于基础研究、临床研究和工业研究。针对每个领域,都陆续开发出了特定的工具。这些工具包括:(i) 利用微电极进行脑内记录 [3,4],该方法可以识别 EEG 信号的神经元来源,并更好地理解 EEG 活动的生理机制;(ii) 大平均法,包括由重复事件 (视觉、听觉、体感……) 触发的一系列试验的平均值 [5],该方法开启了诱发相关电位 (ERP) 领域的研究,最近包括 EEG 源发生器 [8–10] 在内的 EEG 动力学工具 [6,7] 丰富了这一研究领域; (iii) 将 EEG 用于神经反馈和脑机接口 (BCI) [ 11 , 12 ]。过去,这些领域及其相关工具是分开发展的,但计算资源和实验数据的日益普及推动了横向方法和方法论桥梁的发展。视觉诱发电位 (VEP) 是一种特殊的 ERP,从枕叶皮质记录的 EEG 信号中提取,可由不同类型的视觉刺激触发,从简单(如棋盘格)[ 13 ,第 14 页,15 ] 到更复杂的视觉刺激(如人脸、3D 或运动图像)[ 14 , 16 – 20 ]。VEP 是通过计算大量正在进行的 EEG 信号试验的总平均值获得的(见公式 1),从而产生精心设计且易于识别的电位,随后可用于更好地理解视觉输入的连续处理阶段。然而,这些诱发反应来自至少两种不同的机制,分别源自加法模型或振荡模型 [8, 21 – 24]。对于加法模型,诱发反应来自对感觉输入的自下而上的连续处理。这会产生特定序列的单相诱发成分峰,这些峰最初嵌入自发 EEG 背景中。后者 EEG 活动被视为噪声,并通过随后的平均排除。对于振荡模型,诱发电位可能是由于特定频带内正在进行的 EEG 节律的相位锁定所致。这种 EEG 相位重组可以通过试验间一致性 (ITC) 来测量,作为对外部刺激的反应。从根本上讲,只有当相关 EEG 功率没有同时变化(增加或减少)时,这种测量才有意义。在这种情况下,我们处于纯相位锁定状态,诱发反应仅归因于正在进行的 EEG 振荡的重组。例如,体感诱发电位的 N30 分量就是这种情况,其中 70% 的幅度归因于纯相位锁定 [ 25 ]。事实上,在大多数 ERP 研究中,会出现混合情况(功率变化和相位锁定),这使得基础和临床解释变得困难。另一个缺点是,在大多数诱发电位研究中,对一组受试者进行的是总体平均值。虽然总体平均值方法可以得到适当的统计数据[26]和关于基本或临床结果的实际结论,但它掩盖了从临床角度来看可能至关重要的个体特性。当诊断工具基于总体平均值诱发电位[27]时,这个问题尤其重要。同样,对总体平均值数据应用逆建模[10,28]可以非常有效地识别ERP发生器[19,29-31],但不利于确定个体特征。面对这些缺点,