热保护系统 (TPS) 是航天器的重要组成部分,用于保护航天器免受进入大气层时空气产生的热量。近几十年来,人们开发和使用了不同类型的 TPS,包括被动、半被动和主动系统。随着对可重复使用运载火箭 (RLV) 的需求不断增长以及行星际载人飞行任务的新目标,开发有效 TPS 的探索也随之加速。本文全面概述了从 20 世纪中叶到现在不同类型 TPS 的技术发展。回顾了不同类型的 TPS 在各种 RLV 中的应用,并介绍了 TPS 技术的当前发展水平。根据最新的 NASA 技术路线图,质量高效的 TPS 材料和技术、建模和仿真工具和技术以及 TPS 传感器和测量系统这三个主要方面被确定为未来太空任务 TPS 的当前挑战。本文详细讨论了这些挑战,并详细介绍了不同类型 TPS 的未来前景。
(18 SDS) U.S. Space Force 18 th Space Defense Squadron (19 SDS) U.S. Space Force 19 th Space Defense Squadron (CA) Conjunction Assessment (CARA) NASA's Conjunction Assessment Risk Analysis program (CAESAR) Conjunction Analysis and Evaluation Service, Alerts and Recommendations (CCR) Corner Cube Reflectors (CNES) Centre National d'Etudes Spatiales (French Space Agency) (COTS) Commercial-off-the-Shelf (CUBIT)立方体识别标签(D/T/I)检测,跟踪和识别(EGTN)外分析全球望远镜网络(ELROI)极低的资源光学标识符(EUSST)欧盟空间监视和跟踪计划(FCC)联邦通信委员会(GEOSYNCHRONOUS SYSTITE)GEOSYNCHROUS Equicatial(GEOSYNCHRONOUS GROMANES GNSELSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSER)GNSERTARES GNSERASSSSERTARE(GN) (GUI)图形用户界面(HEO)高度椭圆形轨道(HUSIR)HAYSTACK超级卫星卫星成像雷达(IDS)识别(ILRS)国际激光范围范围服务(LEDS)发光diodes(MEO)中等地球(NPR)NASA Procement Enternement(NPR)NASA Procement nation(NANASOSATERICTION)NANOSATERINE(NANANOSATERICE)NANANOSATERICESTINES(NANANOSELITES) (OCAP)轨道连接评估计划(OEM)轨道胚胎消息(O/OS)所有者/操作员(OSAS)轨道安全分析师(PNT)位置,导航和时间(RF)射频(RF)射频(RFID)射频频率识别(SRI)射电频率识别(SRI)Stanford Research Institute(SSA)空间(SSA)空间(SSA)的尺寸(SSA)的量(SSA)量(SSA)的量(SSA)量(SSN) (TLE)两行元素(TRACSS)空间的交通协调系统(USIR)Ultrawideband卫星成像雷达
近年来,人们对太空服务的需求呈爆炸式增长,导致用于商业、科学或军事目的的绕地球运行卫星数量稳步增加 (1)。事实上,环境、经济和战略方面的考虑支持这样一种说法,即太空基础设施的未来将取决于执行在轨服务的能力,包括广泛的太空操作,如检查、停泊、加油、维修、组装等。可以肯定的是,这些操作将借助新型自主或半自主机器人系统进行。毫无疑问,太空机器人技术是一个重要因素,它可以极大地帮助人类在恶劣和危险的环境中过渡到常规太空作业。虽然总的来说,太空机器人技术是一个很大的领域,包括自主卫星和航天器、行星探测车和配备铰接机构的轨道航天器,但在本文中,我们使用太空机器人技术一词主要指后者。因此,我们的目标是简要概述(大量)航天器装载机械手系统的文献,特别是强调它们在未来轨道维修任务中的预期用途。本文大致分为三个不同的部分。在第一部分中,我们概述了航天器装载机器人系统 (SMRS) 对未来在轨维修任务的重要性。在第二部分中,我们回顾了当前用于 SMRS 建模和控制的方法。第三部分介绍了使用超复数语言(即对偶四元数)对 SMRS 建模和控制的一些新发展。与更传统的方法相比,这种数学形式主义具有多种优势,主要源于由此产生的运动方程的紧凑表示,以及能够提供一个统一的框架,该框架涵盖 SMRS 的组合平移和旋转运动,而无需任何简化(例如,人为解耦)假设。我们希望本文能让读者更好地了解太空机器人任务所带来的挑战和巨大机遇。
2历史11 2.1早期:水手和维京人。。。。。。。。。。。。。12 2.2年龄的到来:Voyager。。。。。。。。。。。。。。。。。。。。。16 2.3创新和解决方法:伽利略。。。。。。。。。。。。。。18 2.4地标:附近的鞋匠。。。。。。。。。。。。。。。。。21 2.5到期:卡西尼。。。。。。。。。。。。。。。。。。。。。。。。。22 2.6自治:深空1,星尘,深影响。。。。。。。23 2.7飞行硬件。。。。。。。。。。。。。。。。。。。。。。。。。。26 2.8发展技术的发展。。。。。。。。。。。。。。27 2.9星目录。。。。。。。。。。。。。。。。。。。。。。。。。。。28 2.10立体局限器法。。。。。。。。。。。。。。。。。。。。。。29 2.11未来的任务。。。。。。。。。。。。。。。。。。。。。。。。。。30 2.12 JPL外的光导航。。。。。。。。。。。。。。。。。30 2.13摘要。。。。。。。。。。。。。。。。。。。。。。。。。。。。。31
2 个节点方程 𝑄𝑄= 𝑘𝑘 𝑆𝑆 𝐿𝐿 𝑇𝑇 2 −𝑇𝑇 1 𝑄𝑄= ℎ𝐴𝐴𝑇𝑇 2 −𝑇𝑇 1 𝑄𝑄= 𝐺𝐺𝐺𝐺𝐺𝐺𝑇𝑇 2 4 −𝑇𝑇 1 4
SED 提供全方位的太空系统工程和运营服务,包括结构和机制、电气和电子系统、飞行、地面和测试软件开发、姿态确定和控制系统、推进和反应控制系统、热控制系统、卫星集成和测试、运载火箭和卫星到助推器级集成以及飞行操作指挥、控制、通信、网络工程和管理方面的分析、设计和硬件专业知识。
Starling的四个6U立方体于2023年7月17日从新西兰Mahia的Rocket Lab Punch Complex 1推出。Starling将测试群体操纵计划和执行,通信网络,相对导航以及航天器之间的自主协调。动画图像学分:NASA。图像信用:火箭实验室
NASA STI 计划在 特别出版物。 它负责收集、组织、归档和传播 NASA 计划、项目和任务中的科学、技术或历史信息。 NASA STI 计划通常涉及与 NASA 重大公共利益相关的主题。 航空航天数据库及其公共界面 NASA 技术报告服务器、 技术翻译。 从而提供世界上最大的外国航空航天科学 STI 英语翻译集合之一。 与 NASA 任务相关的科学和技术材料在 NASA 非渠道和 NASA STI 报告系列中发布,该系列包括以下报告类型: 专业服务还包括组织和发布研究结果、分发 技术出版物。专门研究报告和已完成的研究或重大研究阶段的报告,提供搜索支持,并支持数据交换或理论分析。包括重要的科学和技术汇编。有关 NASA STI 数据和信息的更多信息,请参阅以下内容: 访问 NASA STI 计划主页,但对稿件长度和图形演示范围的限制较少。 将您的问题通过电子邮件发送至 help@sti.nasa.gov
飞机和航天器中使用的极限安全系数 (FOS ULT) 概念已经发展了几十年。目前,FOS ULT 1.5 是 FAR 规定的飞机值,而 1.4 的 FOS ULT 已用于各种航天器。本文的动机是希望简明扼要地解释极限安全系数概念的起源、正确解释和应用,因为作者在其职业生涯中看到了许多对这一概念的误解和不正确的应用。简要概述了极限安全系数概念的历史,详细介绍了安全系数在飞机设计、结构分析和操作中的正确应用,讨论了飞机和航天器极限载荷超标的例子,描述了航天器 1.4 FOS ULT 的演变,并解决了有关极限安全系数概念的一些误解。希望本文可以成为工程师了解极限安全系数的起源、目的和正确应用的总结性资源。
1 Baramsai 等人,“NASA 实现聚变能的新捷径:晶格约束聚变无需使用大型磁铁和强力激光器”,IEEE Spectrum(2022 年 3 月)。https://spectrum.ieee.org/lattice-confinement-fusion