会议为航天器设计师,经理,材料工程师和科学家提供了一个论坛,以审查和认真评估LDEF的结果,从他们的相关性,意义以及对航天器设计实践的影响的角度。从国家航空和空间管理局,国防部,工业和学术观点介绍了LDEF调查结果对材料选择,利用和资格的影响。由于
地球大气中包含中性大气成分,位于约90至600 km之间,称为中性热层,而该区域高于600 km左右的区域被称为Exosphere(图。4)。热层主要由中性气体颗粒组成,这些气体颗粒倾向于根据其分子量进行分层。AO是下层热层中的主要成分,氦气和氢主导了较高的区域。如图4所示,较低热层中的温度随着高度从90 km的最低增加而迅速增加。最终,它变得独立于高度,并接近称为外层温度的渐近温度。热层温度以及密度和组合,由于太阳极端紫外线(EUV)辐射的吸收加热,对太阳周期非常敏感。此过程已通过代理参数,即10.7 cm太阳能无线电通量(Flo.7)有效地建模。
本NASA技术手册由国家航空航天局(NASA)出版,作为提供工程信息的指导文件;经验教训;解决技术问题的可能选择;澄清类似术语,材料或过程;解释性方向和技术;以及任何其他类型的指导信息,可以帮助政府或其承包商在设计,构建,选择,管理,支持或操作中的系统,产品,流程或服务。本NASA技术手册已被NASA总部和NASA中心和设施批准使用。它也可以仅在适用合同中指定或提及的范围内适用于喷气推进实验室和其他承包商。本NASA技术手册概述了用于指定和将电气绝缘材料用于航天器高压零件,组件和系统的高压电气/电子设计技术,用于航天器系统设计,用于在没有维护的情况下在太空中进行几天的严格故障操作所需的航天器系统设计。请求应通过https://standards.nasa.gov提交信息。应通过MSFC表格4657提交对本NASA技术手册进行更改的请求,更改NASA工程标准的请求。
摘要 航天器系统及其任务的复杂性日益增加,需要更高水平的性能和创新的解决方案。为确保可靠性、可用性和安全性,必须实现机载自主性和最少故障。故障检测和识别 (FDI) 对于在航天器故障导致重大故障之前识别它们至关重要。然而,由于太空环境和对系统信息的依赖,FDI 的设计和应用具有挑战性。为了提高准确性、速度和抗噪性,已经开发了基于人工智能 (AI) 技术的现代 FDI 方法。本文研究了航天器姿态确定和控制子系统 (ADCS) 和电力子系统 (EPS) 中的最新 FDI 技术。本文讨论了各种 FDI 方法和框架,强调了它们的优点、缺点以及实施 AI 的重要性。此外,本文还对不同的方法进行了彻底的分析和比较。
•有效的任务分配和协调:通过分发决策,航天器可以根据其能力,接近性和可用性自主分配任务。•临时网络通信:可扩展,稳健且自动自动配置的通信基础架构。
无与伦比的功率密度和多功能性彻底改变了航天器,卫星和有效载荷制造商的电源测试系统。ProustUniversas®航空航天行业是致力于领先任务的出色工程师的所在地,结合了高级技术以应对独特的挑战,无情地优化每个部分而不损害可靠性。Terma在创建新的ProustUniversas®2.0电气支持设备(EGSE)的最高标准的指导下。随着空间行业进入成本意识的新时代,改善了TCO维度,包括降低的设施足迹,简化服务和增加的可用性也是开发工作的最前沿。结果无非是革命性 - 一种重新定义航天器和卫星功率测试系统功能的设备。卫星电源系统的综合解决方案测试解决方案通常在洁净室中使用,必须在密闭空间中处理高电流和电压。此外,它们应该尽可能紧凑,以免浪费昂贵的设施足迹。,它们通常是由许多单独设备组成的定制系统,所有这些设备都必须为特定测试配置。甚至目前的部署,尤其是未来的大规模项目,例如计划的低轨道星座,就可靠,灵活且高度可用的测试系统的数量而言,在卫星和有效载荷制造商上面临重大挑战。ProustUniversan®2.0纯粹的性能,想象一下您的测试设备突然比以前好9倍。为了满足这些要求,Terma开发了ProustUniversas®2.0,这是一种新的,最高效率,多功能性和安全性的新型解决方案。ProustUniversas®2.0凭借其多种优化(包括先进的能源能力)展示了我们对功率效率和能量意识的未来的承诺。ProustUniversas®2.0为您提供19英寸架子的两个HUS上的18 kW,这实际上是同一卷中当前解决方案的9倍。此外,您可以在测试运行期间组合设备以扩展到整个空间站。这里的技术背景是,ProustUniversas®2.0部署了世界领先的拓扑和组件,此外,可以经济地将功率恢复到电网中,而不是将其转换为热量。
NASA STI 计划在 特别出版物。 它负责收集、组织、归档和传播 NASA 计划、项目和任务中的科学、技术或历史信息。 NASA STI 计划通常涉及与 NASA 重大公共利益相关的主题。 航空航天数据库及其公共界面 NASA 技术报告服务器、 技术翻译。 从而提供世界上最大的外国航空航天科学 STI 英语翻译集合之一。 与 NASA 任务相关的科学和技术材料在 NASA 非渠道和 NASA STI 报告系列中发布,该系列包括以下报告类型: 专业服务还包括组织和发布研究结果、分发 技术出版物。专门研究报告和已完成的研究或重大研究阶段的报告,提供搜索支持,并支持数据交换或理论分析。包括重要的科学和技术汇编。有关 NASA STI 数据和信息的更多信息,请参阅以下内容: 访问 NASA STI 计划主页,但对稿件长度和图形演示范围的限制较少。 将您的问题通过电子邮件发送至 help@sti.nasa.gov
摘要 — 美国在航天器充电研究方面有着悠久的历史,可以追溯到 1976 年的第一届航天器充电技术会议 (SCTC)。自第 14 届 SCTC 在荷兰举行以来,美国上一次向 SCTC 提交国家摘要,取得了重大进展。我们在此介绍自第 14 届 SCTC 以来进行的航天器充电工作的高级调查。我们的报告将包括美国太空部队、美国国家航空航天局 (NASA)、喷气推进实验室 (JPL)、约翰霍普金斯应用实验室 (APL)、工业界和学术界的工作。我们包括飞行贡献、最新设计规范、地面测试、建模和仿真、模型开发、设施、异常研究进展以及美国充电社区内的各种合作。索引术语 — 国家概况
2022 年,Blue Canyon 为 NASA Artemis I 任务的 10 颗立方体卫星中的 8 颗提供了 XACT 姿态控制系统和 XB1 航空电子解决方案,这些立方体卫星是次要有效载荷。50 多年前阿波罗计划结束后,我们很自豪能够成为重返月球探索的一部分。