下面所描述的信息并非旨在详尽,而是概述了当前的最新技术及其对特定小型卫星子系统的开发状态。本章中的组织/公司列表并非无所不包,也不构成NASA的认可。无意提及某些公司并根据其技术或与NASA的关系省略其他公司。信息仅用于意识和指导。广告宣传的性能可能与实际绩效有所不同,因为该信息尚未由NASA主题专家独立验证,并且依赖于直接来自制造商或可用公共信息提供的信息。应注意的是,TRL指定可能会随着有效载荷,任务要求,可靠性注意事项和/或展示性能的环境的特定更改而变化。读者与公司联系,以获取有关所描述技术的性能和TRL的更多信息。
(AFRL)空军研究实验室(BMS)电池管理系统(BOL)生命开始(CFRPS)复合纤维增强板(CIGS)CU(CIGS)CU(CIGS)SE2 SE2(ga)SE2(cots)商业 - 商业 - 货架(EOL)遗产(EOL)终端(EPS)终端(EPS)电力系统(ESA)电气系统(ESA)欧洲空间(ESA)欧洲空间(GAN)nitride(GAN)nitriide(ka)niTriede(GRC)NASNY ny nyy n. (Li-ion) Lithium-ion (LiCF x ) Lithium carbon monofluoride (LiPo) Lithium polymer (LiSO 2 ) Lithium sulfur dioxide (LiSOCl 2 ) Lithium thionyl chloride (MIL) Military (QML) Qualified Manufacturers List (NiCd) Nickel-cadmium (NiH 2 ) Nickel-hydrogen (OPV) Organic Photovoltaic (奥斯卡)基于碳材料(PCB)印刷电路板(PEASSS)的光传感器(sp)特定功率(交换)尺寸,重量和功率(TPV)热伏oltaic(TR)热辐射(TRL)技术准备水平(WH kg -1)瓦特小时每公斤瓦特小时
摘要。小行星影响与挠度评估(AIDA)是NASA DART任务与ESA HERA任务之间的合作。目的范围是通过动力学碰撞研究小行星挠度。DART航天器将与Didymos-B碰撞,而地面站监视轨道变化。HERA航天器将研究影响后情况。HERA航天器由主航天器和两个小立方体组成。HERA将通过摄像头,雷达,卫星到卫星多普勒跟踪,LIDAR,地震测定法和重力法监测小行星。在本文中报道了LIDAR工程模型高度计Helena上的第一次迭代。Helena是一个TOF高度计,可提供时间标记的距离和速度测量值。LIDAR可用于在小行星导航附近的支持,并提供科学信息。Helena设计包括一个微芯片激光和低噪声传感器。这两种技术之间的协同作用使得可以开发一种紧凑的仪器,以达到14公里的范围测量。热力学和辐射模拟。该设计受到振动,静态和热条件的影响,并且可以通过结果结论,望远镜符合随机振动水平,静态负载和工作温度。
本报告每年更新一次,以收集 NASA 和其他来源提供的有关公开的小型航天器系统的大量新信息。虽然所有章节的更新都反映了小型航天器市场的增长,但我们也做出了一致努力,以更新最新技术发展领域,这些发展最终可能会弥补现有的技术差距。多年来,每章的组织方法已经日趋成熟,不仅可以捕捉当前最先进的 SmallSat 技术的发展状况,还可以提炼出读者在确定任务组件时需要考虑的设计考虑因素。章节组织包括技术介绍、技术可采购系统的当前发展状况以及所调查技术的汇总表。每章的内容都经过独特组织,以呈现关于航天器子系统的小型独立报告,并且以前版本的信息会根据新技术和成熟的技术以及参考任务(如果适用)进行更新。最后,作者试图以一致的方式使用“SmallSat”、“微型卫星”、“纳米卫星”和“CubeSat”这些术语,即使这些术语在航天工业中经常互换使用。
该平台也是国防部太空测试计划 (STP) 太空测试计划卫星——太空和导弹系统中心/先进系统和发展局 (SMC/AD) 的基础。STPSat- 作为 LEO 的共乘系统,并搭载了五个政府提供的 (GP) 有效载荷。Sierra Space 是 STPSat- VELOCITY 模块化、可重构 ESPA 级总线的主要承包商。Sierra Space 在我们位于科罗拉多州路易斯维尔的设施中设计并建造了航天器总线、集成了 GP 有效载荷并执行了完整的航天器测试和发射/操作支持。自 STPSat 以来,航天器设计不断升级——处理和推进能力得到改进。我们的新型高速处理器显著提高了有效载荷数据吞吐量。
(1) ATG Innovation Ltd.,办公室 11 和 12 楼一号单元 8 单元,戈尔韦科技园,戈尔韦,H91PX3V,爱尔兰。电子邮箱:brendan.murray@atg-europe.com 关键词复合材料、晶格结构、附着物、不间断纤维铺放、圆柱体、卫星中心管、级间。摘要碳纤维增强塑料 (CFRP) 晶格卫星中心管 (SCT) 演示器设计为包括各种配置的集成层压板贴片,用于典型的 SCT 界面附着点。然后对基于这些设计的元件级附着样品进行广泛的面包板测试,以测试平面内、平面外和弯曲载荷配置,以验证晶格附着点的结构完整性。在进入全尺寸演示器的制造之前,使用测试在局部层面上验证预测方法,对样品的不同设计特点进行评估。测试结果表明,所有接口要求均得到满足,所有连接类型(除一种外)的预测失效负载均超过预期,从而凸显了当前晶格设计、建模和分析方法的总体保守性。这次成功的测试使演示器能够继续制造,并且对整体设计的预测行为充满信心。1. 简介
1. 简介 可靠的热控制子系统 (TCS) 是任何航天器的关键方面,但 TCS 的可靠性在实践中往往难以实现。TCS 的可靠性在设计阶段经常被高估,导致故障率高于客户愿意接受的水平。因此,航天器热控制界需要重新评估其公认的技术,本文旨在促进这一对话。本文回顾了航天器上使用的几种重要流体热控制技术的可靠性,包括泵送流体回路 (PFL)、回路热管 (LHP)、可变电导热管 (VCHP) 和轴向槽热管 (AGHP)。本综述更多地关注 PFL 和 LHP,因为这些更复杂、更强大的技术的使用有更多公开记录,并且这些系统的故障记录也更多。总结了所有已知的 PFL、LHP 和 VCHP 故障的开源示例,并显示了故障原因和一些解决方案。分析部分讨论了每种流体热控制子系统的故障率,以及更高的故障率与更复杂的设计有何关联。最后,提出了如何避免将来发生此类故障的建议。
如果没有出现特殊情况,本文件自发布之日起将在互联网或其未来的替代品上保存较长一段时间。访问该文档意味着允许任何人阅读、下载、打印单份供个人使用,以及将其原封不动地用于非商业研究和教学。以后转让版权不能撤销此许可。对本文档的任何其他使用均需征得作者同意。为了保证真实性、安全性和可用性,有技术和管理性质的解决方案。作者的知识产权包括在以上述方式使用文档时良好实践所要求的范围内署名作者的权利,以及防止文档被更改或以此类形式或以此类方式呈现的权利。冒犯作者的文学或艺术声誉或个性的上下文。有关林雪平大学电子出版社的更多信息,请访问出版商的网站 http://www.ep.liu.se/
人工智能 (AI) 有望在从任务设计规划到卫星数据处理和导航系统等太空操作领域取得突破。人工智能和太空运输的进步使人工智能技术能够应用于航天器跟踪控制和同步。本研究评估了三种替代的航天器跟踪控制和同步 (TCS) 方法,包括非人工智能 TCS 方法、人工智能 TCS 方法和组合 TCS 方法。该研究提出了一种混合模型,包括一个用于定义权重系数的新模型和基于区间型 2 模糊集的组合折衷解 (IT2FSs-CoCoSo) 来解决航天器 TCS 问题。一种新方法用于计算标准的权重系数,而 IT2FSs-CoCoSo 用于对 TCS 方法的优先级进行排序。进行了比较分析以证明所提出的混合模型的性能。我们通过一个案例研究来说明适用性,并展示所提出方法的有效性,该方法基于十个不同的子标准对替代 TCS 方法进行优先排序,这些子标准分为三个主要方面,包括复杂性方面、操作方面和效率方面。根据本研究的结果,人工智能和非人工智能方法相结合是最有利的替代方案,而非人工智能方法则是最不有利的。2022 COSPAR。由 Elsevier BV 出版 这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。