导航的几何概念、参考框架、坐标变换、变换方法比较。惯性传感器、惯性导航系统-机械化、外部辅助导航、组合导航。模块 4:制导简介(7 个讲座小时)导弹制导律;制导律的分类;经典制导律;现代制导律、自动驾驶仪 - 纵向、横向和导弹。模块 5:控制简介(8 个讲座小时)控制系统简介开环和闭环控制系统-传递函数极点和零点-框图简化-信号流图-梅森增益公式模块 6:系统稳定性(9 个讲座小时)特征方程-稳定性概念-劳斯稳定性标准根轨迹。经典线性时不变控制系统。稳定性;时域特性。航空航天系统的 PID 控制器设计。频域特性、奈奎斯特和波特图及其在航空航天系统控制器设计中的应用。教科书:
Sandip Harimkar,博士——教授,Albert H. Nelson,Jr. 主席兼系主任 机械与航空航天工程系主任,Donald 和 Cathey Humphrey 捐赠主席:Hanchen Huang,博士 俄勒冈州立大学塔尔萨分校教授兼副院长,Helmerich 先进技术研究中心主任,俄克拉荷马州 EPSCOR 办公室主任兼 Helmerich 捐赠主席:Raman P. Singh,博士 先进材料摄政教授兼 Herrington 主席:Don A. Lucca,博士,Drhc,CMfgE 摄政教授兼 OG&E 能源技术主席:JD Spitler,博士,PE 摄政教授,Williams 主席兼俄克拉荷马航空航天研究与教育研究所所长:Jamey D. Jacob,博士,PE 教授,Noble 基金会主席兼 NASA 俄克拉荷马州空间赠款联盟 /EPSCoR 主任:Andrew S. Arena,Jr.,博士 教授,Van Weathers 主席兼 Zink 中心主任:Dan Fisher,博士,PE 教授: Brian R. Elbing,博士;Afshin J. Ghajar,博士,PE(名誉);James K. Good,博士,PE(名誉);Lawrence L. Hoberock,博士,PE(名誉);David G. Lilley,博士,DSc,PE(名誉);Richard L. Lowery,博士,PE(名誉);Christopher E. Price,博士,PE(名誉);Gary E. Young,博士,PE(名誉) 副教授、Carol M. Leonard 教授职位和综合建筑系统中心主任:Craig Bradshaw,博士 副教授:Aaron Alexander,博士(兼职);Aurelie Azoug,博士;Christian Bach,博士;He Bai,博士;Frank W. Chambers,博士,PE(名誉);Imraan Faruque,博士;Jay C. Hanan,博士;Kaan Kalkan,博士;James M. Manimala;Kurt P. Rouser,博士;Khaled A. Sallam,博士;阿尔温德·桑塔纳克里希南博士;王硕道,博士;助理教授:Jacob Bair,博士;尼科莱塔·法拉博士;阿塔努·哈尔德博士;杰罗姆·豪塞尔博士;库尔萨特·卡拉博士;李思成,博士;赫曼斯·曼朱纳塔博士;阿德希尔·莫法塔哈里博士;普兰贾·诺蒂亚尔博士;哈迪·努里博士;瑞安·C·保罗博士;奇特拉斯·普拉萨德博士;里泰什·萨尚博士;赵伟,博士 讲师:Alyssa Avery,博士(研究助理教授);格斯·阿泽维多(Gus Azevedo)博士(研究助理教授); Joseph P. Conner, Jr.(教学副教授); Ronald D. Delahoussaye,博士(荣誉退休); Ben Loh,博士(研究助理教授); Ehsan Moallem,博士(教学副教授); Laura Southard(教学副教授)研究教授兼新产品开发中心主任:Robert M. Taylor,博士,PE
Focus 2 职业评估 (https://careers.dasa.ncsu.edu/explore- careers/career-assessments/)(需要北卡罗来纳州立大学学生电子邮件地址)此职业、专业和教育规划系统可供北卡罗来纳州立大学在校学生使用,以了解您的价值观、兴趣、能力和个性如何与北卡罗来纳州立大学专业和您未来的职业相匹配。创建帐户需要北卡罗来纳州立大学电子邮件地址。与您的职业顾问预约(https://careers.dasa.ncsu.edu/about/hours-appointments/)讨论结果。
MAE 517 产品、系统和流程的先进精密制造(3 个学分)这是一门针对研究生和本科生设计的研究生课程。本课程研究产品、制造机器、流程和仪器的精度问题。现代制造技术在产品尺寸、材料、能量形式、理论和信息类型方面具有多样性,但其成功的关键在于精度管理。本课程讨论了对现有精密制造和未来亚微米/纳米技术至关重要的问题。重要主题包括基本机械精度;制造系统和流程;几何尺寸和公差;工艺规划、公差图表和统计过程控制;精度、重复性和分辨率的原理;误差评估和校准;误差预算;逆转原理;接头设计和刚度考虑;精密传感和控制;精密激光材料加工。
航空航天工程理学学士学位成功地培养了未来的航空航天工程师,使他们能够在多学科团队中工作,以创新的方式设计产品和开展研究,从而对地区、国家和全球产生积极影响。该课程侧重于将工程原理应用于飞机、导弹和航天器等航空航天飞行器的设计、制造和功能。学生在接触轨道力学、空间结构和火箭推进的同时,深入了解空气动力学、工程材料和工艺、结构、推进、飞行力学和控制。
通过飞行方程物理学、任务分析、推进、结构、材料和民用及军用飞机/航天器的控制系统,了解现代飞机和航天器的技术发展。通过新兴的伦理考量和全球影响,综合当前和未来的航空航天技术。4 个讲座。课程可以课堂授课或在线授课。交叉列为 AERO/HNRS 310。满足 GE 高级 B 课程要求(2019-20 年目录中的学生的 GE 区域 B5、B6 或 B7)。
工程机制是UW - 麦迪逊的航空航天工程的所在地。空中和太空旅行中一些最令人兴奋的创新需要了解该专业核心的工程机制原则。驾驶舱中是否有人类或遥控无人机,飞机与周围环境的相互作用会导致变形,振动和动态动作,这些动作都由工程机制解释。即使没有飞机,航天器和探索遥远行星的车辆所经历的气氛,也必须承受各种力量,并且在可能无法维修的环境中可靠。在这两种情况下,都有减少体重和扩大功能的溢价。这使航空工程成为工程机制的自然扩展。遵循与我们的工程机制专业相同的基本课程,航空航天工程选择中的学生将在结构分析,材料科学,高级动态和振动中应用其教育,以适用于空气动力学,飞行动力学,轨道力学和推进的特定课程。该计划的亮点是空气动力学实验室,学生在UW - 麦迪逊风洞进行实地实验。与您的学术顾问讨论宣布此选项。
AE 6513. 自主规划和决策的数学原理。3 个学分。本课程将向学生介绍数学工具和理论,用于制定和解决涉及自主系统控制和规划的高级决策问题,重点是航空航天应用。