学分:3.00。实验课程将包括实验室准备讲座、实践课和小型项目。实验室准备讲座将简要介绍与后续实践课相关的基本等离子体物理和诊断学主题。此外,还将讨论相应实验室程序、说明和实验室报告作业的细节。实践课将让学生参与各种等离子体源和等离子体诊断的实际创建和操作。具体来说,学生将操作直流高压击穿设施、静电加速器(离子推进器)、交叉场加速器(霍尔推进器)、大气压等离子体喷射设施,并使用朗缪尔探针、微波干涉仪和光谱仪测量等离子体参数。学分:3.00
• ENT 4950 企业项目工作 V** (2) 先决条件:(BE3350 或 BE3700 或 BE4900) 或 (CEE3620 或 CEE3810) 或 (CM4855(c)) 或 (CS3712 或 CS4711 或 CS4760) 或 (ENT3960 和 EE3131 和 EE3901) • ENT 4960 企业项目工作 VI** (2) 先决条件:ENT4950 和 (BE4900 或 CEE3620 或 CEE3810 或 CM4855 或 CS3712 或 CS4711 或 CS4760 或 EE3171 或 EE3173 或 GE3880 或 GE3890 或 MSE4141 或 CMG4210 或 EET4253 或 MET4460 或SAT4541 或 SU4100 或 ENG3830 或(ENG3505 和 ENG4505)或(MEEM3750 和 MEEM3201) • ENT 4961 企业项目工作 VII** (1) 先决条件:ENT3950 和 ENT3960 和(ENT4950 和 ENT4960)或(ENT4900 和 ENT4960) • MEEM 4202 内在流体力学与传热 (3) 先决条件:MEEM3201 和(MA3520(c) 或 MA3521(c) 或 MA3530(c) 或 MA3560(c)) • MEEM 4210 计算流体工程 (3) 先决条件:MEEM3201(c) • MEEM 4230 可压缩流/气体动力学 (3) 先决条件: MEEM3201 • MEEM 4701 分析与实验模态分析 (4) 先决条件:MEEM3750 • MEEM 4720 空间力学 (3) 先决条件:MEEM2700 • MEEM 4820 航空推进简介 (3) 先决条件:MEEM4230 • MEEM 5180 复合材料力学 (3) 先决条件:MEEM4901(c) 或 ENT4950(c) • MSE 4430 复合材料 (3) 先决条件:MY2100 或 MSE2100 或 BE2800
AE 6513. 自主规划和决策的数学原理。3 个学分。本课程将向学生介绍数学工具和理论,用于制定和解决涉及自主系统控制和规划的高级决策问题,重点是航空航天应用。
通过飞行方程物理学、任务分析、推进、结构、材料和民用及军用飞机/航天器的控制系统,了解现代飞机和航天器的技术发展。通过新兴的伦理考量和全球影响,综合当前和未来的航空航天技术。4 个讲座。课程可以课堂授课或在线授课。交叉列为 AERO/HNRS 310。满足 GE 高级 B 课程要求(2019-20 年目录中的学生的 GE 区域 B5、B6 或 B7)。
符合行业的认证 • 工程技术基础 • 预工程/工程技术 - 就业准备 • 精益六西格玛绿带认证 • 航空航天制造认证 • Autodesk Associate(认证用户)AutoCAD • Autodesk Associate(认证用户)Fusion 360 • Autodesk Associate(认证用户)Inventor 机械设计 • Autodesk Associate(认证用户)Revit Architecture • Autodesk Associate(认证用户)Revit 电气 • Autodesk Associate(认证用户)Revit 结构设计 • Autodesk Certified Professional Fusion 360 • Autodesk Certified Professional in AutoCAD 设计和制图 • Autodesk Certified Professional in Civil 3D 基础设施设计 • Autodesk Certified Professional in Inventor 机械设计
航空航天工程在大气和太空飞行的基础上点燃学生的学习。航空航天工程是PLTW工程计划的专业课程之一。课程在大气和太空飞行的背景下加深了工程专业学生的技能和知识。学生通过设计和测试与飞行相关的组件(例如机翼,推进系统和火箭)来探索空中和空间中的飞行基础。他们学习轨道力学概念,并通过使用行业标准软件创建模型来应用它们。他们还将航空航天概念应用于风力涡轮机和降落伞等替代应用。学生模拟了探索行星的操作进展,包括用模型卫星创建地形地图,并使用地图使用自主机器人执行任务。
PO1 工程知识:将数学、科学、工程基础和工程专业知识应用于解决复杂的工程问题。PO2 问题分析:识别、制定、研究文献并分析复杂的工程问题,使用数学、自然科学和工程科学的第一原理得出有根据的结论。PO3 解决方案的设计/开发:设计复杂工程问题的解决方案,并设计满足特定需求的系统组件或流程,同时适当考虑公共健康和安全以及文化、社会和环境因素。PO4 对复杂问题进行调查:使用基于研究的知识和研究方法,包括实验设计、数据分析和解释以及信息综合,以提供有效的结论。PO5 现代工具的使用:在了解局限性的情况下,创建、选择和应用适当的技术、资源以及现代工程和 IT 工具(包括预测和建模)来处理复杂的工程活动。PO6 工程师与社会:运用基于背景知识的推理来评估与专业工程实践相关的社会、健康、安全、法律和文化问题以及随之而来的责任。PO7 环境与可持续性:了解专业工程解决方案在社会和环境背景下的影响,并展示可持续发展的知识和需求。PO8 道德:运用道德原则,遵守工程实践的职业道德、责任和规范。PO9 个人与团队合作:作为个人、作为不同团队的成员或领导者以及在多学科环境中有效发挥作用。PO10 沟通:就复杂的工程活动与工程界和整个社会进行有效沟通,例如,能够理解和撰写有效的报告和设计文档,进行有效的演示,并给出和接受明确的指示。PO11 项目管理和财务:展示对工程和管理原则的知识和理解,并将其应用于自己的工作、作为团队成员和领导者、管理项目和多学科环境。PO12 终身学习:认识到在技术变革的最广泛背景下进行独立和终身学习的必要性,并有准备和能力参与其中。PSO1 识别、制定和解决相关领域的航空航天工程问题,以提供有效的解决方案 PSO2 分析、设计和开发航空航天工程新兴领域不同复杂程度的应用程序 PSO3 提供一个以专业和道德责任从事研究的平台,以满足社会需求