资格,许可和证书•质量管理EN 9100:2018•焊接资格焊接公司ACC。to DIN EN ISO 3834-2 Nadcap AC7110 WLD (stainless steel and titanium) • Welder's performance Qualification EN ISO 24394 - B (stainless steel) EN ISO 24394 - C (titanium) • Welding supervision Welding engineer EWE / IWE-III Welding specialist EWS / IWS-II • Non-destructive testing DIN EN ISO 17637年,融合焊接接头的视觉测试DIN EN ISO 3452,染料渗透剂测试DIN EIN EIN ISO 17636-1,-2,放射线学测试压力和泄漏测试ACC。满足客户需求NADCAP AC7114 NDT(DPI / X射线)准备3D测量•破坏性测试DIN EN EN ISO / IEC 17025实验室认证所有标准测试方法ACC。to ISO标准to ISO标准
资料来源:AFS-D 图像归功于 MELD TM Manufacturing,冷喷涂图像归功于 Spee3D,EBW-DED 图像归功于 Sciaky 和 Lockheed Martin Corporation,AW-DED 图像归功于 Gefertec,LW-DED 图像归功于 Meltio,UAM 图像归功于 Fabrisonic 和 NASA JPL,LP-DED 图像归功于 IRT Saint-Exupery 和 Formalloy 领导的 DEPOZ 项目,L-PBF 图像归功于 Renishaw plc 和 CellCore GmbH/Sol Solutions Group AG,EB-PBF 图像归功于 Wayland 和 GE Additive/Arcam。
运动系统的目的是将飞机上感受到的力应用到模拟器座舱中 (Reid, 1984)。实际上,这无法完全复制,因为运动执行器被限制在几米的位移内。然而,六个执行器可以组合起来提供三种线性力:升沉、纵摇和横摇,以及三种力矩:俯仰、滚转和偏航。运动与视觉系统紧密同步,提供强大的视觉和运动提示,达到令人惊讶的高真实感。对于军用模拟器,无法复制更高的重力,固定底座配置通常与一种特殊构造的座椅(称为重力座椅)结合使用,重力座椅通过移动座椅底座和侧面对飞行员施加力,以复制安全带中感应到的重力。
INCE于1958年首次演示,碳 - 碳复合材料现在通常用于防御和航空应用中。 碳 - 碳复合材料是由碳纤维和基质相组成的热稳定复合材料。 这些材料被美国国防部归类为“关键技术”,用于弹道性诺塞术;火箭电动机;和重新进入材料,例如隔热罩和Aeroshells。 当前的碳 - 碳复合材料通常是通过聚合物浸润和热解过程创建的,并且散装密度较低,约为1.60 g/cc。 具有较高散装密度的碳 - 碳复合材料是可取的,因为该特性等于在其他领域的性能提高,包括更高的硬度,更高的导热率以及更大的机械侵蚀和耐磨性。 使用热等位压力浸入碳化(HIPIC)过程可以实现较高的大量密度约为1.95 g/cc。 但是,几十年前开发的过程旨在为洲际弹道导弹制造鼻孔,是危险的,非常昂贵且难以实施的。 材料研发公司Matech(加利福尼亚州韦斯特莱克村)最近开发了一种申请专利的技术,用于制造全新的超高密度(UHD)碳 - 碳复合材料。 这种开发扩展了Matech先前使用现场辅助烧结技术(FAST)的SIC/SIC和C/SIC陶瓷基质复合材料致密的工作。 1,2INCE于1958年首次演示,碳 - 碳复合材料现在通常用于防御和航空应用中。碳 - 碳复合材料是由碳纤维和基质相组成的热稳定复合材料。这些材料被美国国防部归类为“关键技术”,用于弹道性诺塞术;火箭电动机;和重新进入材料,例如隔热罩和Aeroshells。当前的碳 - 碳复合材料通常是通过聚合物浸润和热解过程创建的,并且散装密度较低,约为1.60 g/cc。具有较高散装密度的碳 - 碳复合材料是可取的,因为该特性等于在其他领域的性能提高,包括更高的硬度,更高的导热率以及更大的机械侵蚀和耐磨性。使用热等位压力浸入碳化(HIPIC)过程可以实现较高的大量密度约为1.95 g/cc。但是,几十年前开发的过程旨在为洲际弹道导弹制造鼻孔,是危险的,非常昂贵且难以实施的。材料研发公司Matech(加利福尼亚州韦斯特莱克村)最近开发了一种申请专利的技术,用于制造全新的超高密度(UHD)碳 - 碳复合材料。这种开发扩展了Matech先前使用现场辅助烧结技术(FAST)的SIC/SIC和C/SIC陶瓷基质复合材料致密的工作。1,2
基于参考文献:•Gradl,P。,Brandsmeier,W.,Calvert,M。等,“添加剂制造概述:推进应用程序,设计和经验教训。 演示,” M17-6434。 12月1日(2017年)。 •ASTM委员会F42关于添加剂制造技术。 添加剂制造技术的标准术语ASTM标准:F2792-12A。 (2012)。 •Gradl,P.R.,Greene,S.E.,Protz,C.,Bullard,B.,Buzzell,J.,Garcia,C.,Wood,J.,Osborne,R.,Hulka,J。和Cooper,K.G.,2018。 液体火箭发动机燃烧设备的添加剂制造:过程开发和热火测试结果的摘要。 在2018年联合推进会议上(第4625页)。 •Ek,K。,“添加剂制成的金属”,科学硕士论文,KTH皇家理工学院(2014年)。基于参考文献:•Gradl,P。,Brandsmeier,W.,Calvert,M。等,“添加剂制造概述:推进应用程序,设计和经验教训。演示,” M17-6434。12月1日(2017年)。•ASTM委员会F42关于添加剂制造技术。添加剂制造技术的标准术语ASTM标准:F2792-12A。(2012)。•Gradl,P.R.,Greene,S.E.,Protz,C.,Bullard,B.,Buzzell,J.,Garcia,C.,Wood,J.,Osborne,R.,Hulka,J。和Cooper,K.G.,2018。液体火箭发动机燃烧设备的添加剂制造:过程开发和热火测试结果的摘要。在2018年联合推进会议上(第4625页)。•Ek,K。,“添加剂制成的金属”,科学硕士论文,KTH皇家理工学院(2014年)。
Milpower Defence Systems 成立于 2017 年,由在军用陆地车辆项目中工作多年的经验丰富的工程师创立,旨在为国防工业设计和生产解决方案。Milpower Defence Sytems 成立的目的和战略目标是参与军用陆地车辆、空中平台、机车和高性能工业系统项目,并成为这些项目的“冷却系统”供应商。产品开发和项目研究在位于安卡拉比尔肯特网络园区和伊斯坦布尔科技园区的研发办公室进行。产品测试、验证和组装过程在位于安卡拉伊维迪克的工厂进行。Milpower Defence Systems 拥有符合军事和航空航天标准的产品设计和生产能力。
美国联邦航空管理局 (FAA) 在其更广泛的许可框架下监督载人商业太空运营。FAA 要求商业发射运营商在美国境内开展任何运营之前获得许可——无论他们运载的是人员还是有效载荷,例如卫星。要获得许可,运营商必须证明他们可以在不危及未参与运营的人员和财产安全的情况下开展运营。FAA 对载人运营有额外的许可要求,例如机组人员培训和扑灭机舱火灾的能力。这些要求旨在解决对未参与公众的风险。由于国会于 2004 年制定了一项暂停令,以限制新兴行业的某些监管负担,FAA 目前被禁止颁布旨在保护机上人员安全的法规,但有一些例外。该禁令将于 2024 年 3 月 8 日到期。
向潜在乘客传达尚未完全确定的风险和危险暴露情况是形成评估安全性和可靠性的道德框架的最重要方面之一。与任何危险活动一样,参与者签署豁免条款时要清楚了解他们承担的风险或未知风险。例如,翼装飞行的死亡率是 1/500,这是几十年来数千次跳伞得出的数字。2 缺乏足够的数据是创建新太空系统准确风险评估的最初障碍,这一障碍将随着时间和经验的积累而克服。3(根据美国联邦航空局的标准,总共只有 635 人进入过太空。)评估不同类型的飞行器、不同的目的地和不同的体型也增加了难度。
摘要: - 在高速飞机和铁路应用中使用再生制动系统(RBS)的使用表示能量回收,耗散和再利用的变革性进步。这项研究研究了专为高速导轨(HSR),太空发射恢复系统和弹道重新进入车辆而设计的复杂的电动力学,机电和混合动力学回收系统。在这些区域中的常规制动方法导致通过散热器大大损失能量,从而限制了系统效率。相比之下,使用超副作用,超导磁能储存(SME)和飞轮储能系统(FESS)的再生制动系统为有效的能量回收提供了理想的方法。固态电力电子设备与高速轨道逆变器在高速轨道上的组合可以使高速轨道上的高速轨道上的能量反馈到电网能量弹性,并提高电网的能量弹性,并弹性弹性弹性弹性弹性。在太空发射恢复中,创新的电动力系和基于等离子体的电磁制动制动器可实现轨道能量耗散,并具有调节的秋季动力学,从而最大程度地减少对逆转的依赖。弹道重新进入车辆使用空气动力集成的磁性水力动力学(MHD)制动系统,通过血浆鞘调节来促进受控减速并通过血浆鞘调节减少热通量。这项研究研究了通过适应效果的效率来调整效果效率,从而研究了重新分配和能量的能量效率。在强烈的机械应力下,压电纳米生成器在车辆组件中的整合增强了能量的回收,促进了多模式收获。建议的创新重新考虑了在高速速度运输系统中减速能源管理的基本范式,增强可持续性,降低了对消费依赖的依赖性,并降低了依赖性的依赖性,并具有长期的良好范围。未来的研究应集中于将基于量子点的超级电容器与固态锂空气电池合并,以增强高密度再生存储系统,从而加速下一代节能的航空制动和铁路制动技术。
美国,john.sloan@faa.gov 摘要 美国联邦航空管理局 (FAA) 商业空间运输办公室正在为美国法律中限制商业载人航天 (HSF) 安全法规制定的条款的到期做准备。自 2004 年《商业航天发射修正案》通过以来,一直有一个“学习期”,或通常所说的“暂停期”,用于增加额外的安全法规来保护飞行器上的人员。虽然 FAA 于 2006 年针对 2004 年的法律发布了有限的载人航天法规,但美国国会也表示“随着行业的成熟,管理载人航天的监管标准必须不断发展,以便法规既不会扼杀技术发展,也不会让机组人员或航天飞行参与者面临可避免的风险,因为公众开始期望该行业能为机组人员和航天飞行参与者提供更高的安全性”。美国国会已三次延长学习期的到期时间。目前的到期日期是 2023 年 10 月 1 日。随着各行业的飞行率不断提高,美国国会正在考虑是延长学习期还是让它到期。2021 年,FAA 批准了八次商业发射(轨道和亚轨道)和三次载人再入。2022 年迄今为止,FAA 已批准了另外五次商业发射。本文旨在描述 FAA 当前为解决商业发射和再入飞行器上的乘员安全问题而开展的活动。FAA 正在开展三项主要工作,为未来的载人航天法规做准备。首先,FAA 正在建立一个航空航天规则制定委员会 (SpARC),该委员会将召集发射和再入运营商、政府机构、学术界和其他相关方,讨论载人航天法规的潜在框架。其次,FAA 目前正在努力审查和更新 2014 年载人航天飞行乘员安全建议措施。 FAA 正在更新和添加有关运营商如何表明他们遵守建议做法的更多信息,并吸取最近载人航天商业经验中的经验教训。FAA 的第三个重点领域是通过 ASTM International 和国际标准化组织等组织制定共识标准。FAA 许可的运营商在设计和操作 HSF 飞行器时可以使用这些标准。本文对正在考虑采用模型来制定商业太空运输国家框架的行业和国家很有用。* 曾在 FAA/AST 任职