此转载是对航空航天系统的动态,控制和致动的全面研究,解决了航空航天工程中的关键挑战和创新解决方案。通过整合新的方法论和实际应用,该重印展示了空间操纵器的分布式控制中的进步,无拖力卫星的状态依赖性控制,全天候立方体的混合推进系统以及用于Aero-Engine Engine和Spacecra的先进策略。探索了各种技术,包括滑动模式控制,模型预测控制,分散的LQR和自适应模糊控制,以实现轨迹跟踪,振动抑制以及集成指导和控制的强大解决方案。 此外,这种重印强调了高级材料和传感技术的变革性潜力,例如压电传感器,纤维Bragg光栅(FBG)系统和智能材料,以增强振动抑制,结构健康监测和系统可靠性。 通过理论建模,计算分析和实验验证的结合,研究提供了对航空航天系统的设计和优化的整体观点。 针对研究人员,工程师和专业人员,该重印是理解航空动态,控制和驱动技术的最新进步和未来方向的宝贵资源。探索了各种技术,包括滑动模式控制,模型预测控制,分散的LQR和自适应模糊控制,以实现轨迹跟踪,振动抑制以及集成指导和控制的强大解决方案。此外,这种重印强调了高级材料和传感技术的变革性潜力,例如压电传感器,纤维Bragg光栅(FBG)系统和智能材料,以增强振动抑制,结构健康监测和系统可靠性。通过理论建模,计算分析和实验验证的结合,研究提供了对航空航天系统的设计和优化的整体观点。针对研究人员,工程师和专业人员,该重印是理解航空动态,控制和驱动技术的最新进步和未来方向的宝贵资源。
在本课程中,学生使用系统思维习惯、系统思维策略以及航空航天技术知识、概念和原则来探索问题并制定解决方案。学生学习理解和解释连接系统及其组成部分之间和内部的关系。他们识别有问题的航空航天系统情况中的模式并提出有关解决方案的建议。这种学习能力为学生提供了更高阶的认知能力,以应对令人兴奋且充满活力的技术世界中存在的问题。学生开发和使用包括分析、决策、论证、识别、理解和评估在内的技能来制定航空航天问题情况的解决方案。航空航天系统中基于问题的学习框架鼓励学生成为自主学习者并发展有益的协作和管理技能。
• AES 2050:航空历史与航天历史开发 (3) • AES 2607:航空航天系统模拟简介 (3)* • AES 3000:飞机系统与推进 (3) • AES 3600:太空飞行操作 I (3)* • AES 3610:航天器设计要素 I • AES 3607:轨道力学与航空航天系统模拟 (3) • AES 3620:航空航天系统项目和任务调度 • AES 4601:太空飞行操作 II (3)* • AES 4602:航空航天通信操作 (3)* • AES 4603:航空航天操作系统分析与设计 (3)* • CHE 1800:普通化学 I (4) • CS 1030:计算机科学原理 (4) • CSS 2751:网络安全原理 (3) • JMP 2610:技术写作入门 (3) • EET 2000:电路与机械 (3) • MET 1010:制造流程 (3) • MET 1200:技术制图 I (3) • MET 1310:质量保证原则 (3) • CET 2150:力学 I – 静力学 (3) • MET 2200:工程材料 (3) • MET 3110:热力学 (3) • MET 3160:力学 II – 动力学 (3) • CET 3135:材料力学(带实验室) (4) • MET 3185:流体力学 I (3) • MET 3410:几何尺寸与公差 (3) • MET 4000:项目工程 (3) • MTH 1410:微积分 I • MTH 2410:微积分 II • PHY 2311:普通物理学 I (4) 和 PHY 2321:实验室 I (1) • PHY 2331:普通物理学 II (4) 和 PHY 2341:实验室 I (1) • IDP 教职顾问建议的其他课程 选修课 学生需要选修此处未列出的选修课,以满足 120 个学分和 39 个高年级学分,从而完成学位要求。
航空航天系统的可靠性工程对于确保现代航空航天运营的安全性,效率和可持续性至关重要。本文深入研究了这一关键学科中的挑战和创新。首先建立了可靠性工程的基本原理,包括可靠性,可用性和可维护性等概念,以及各种失败分析技术和指标。然后,本文研究了航空可靠性工程中所面临的独特挑战,例如恶劣的环境条件,复杂的系统架构和严格的监管要求,均在成本和绩效的限制范围内。探索了解决这些挑战的技术和方法,包括故障模式和效果分析(FMEA),故障树分析(FTA)和以可靠性为中心的维护(RCM)。 通过引人注目的案例研究,该论文强调了航空系统及其可靠性工程挑战的真实示例,从而提供了有关成功实施策略和经验教训的见解。 此外,它研究了新兴趋势和创新,例如使用AI,数字双胞胎和高级材料进行预测维护,从而塑造了航空可靠性工程的未来。 还检查了监管框架和标准,从而对合规要求有全面的了解。 最后,本文概述了未来的方向,强调需要继续研究和协作以应对预期的挑战,并推动航空系统可靠性工程的进一步进步。探索了解决这些挑战的技术和方法,包括故障模式和效果分析(FMEA),故障树分析(FTA)和以可靠性为中心的维护(RCM)。通过引人注目的案例研究,该论文强调了航空系统及其可靠性工程挑战的真实示例,从而提供了有关成功实施策略和经验教训的见解。此外,它研究了新兴趋势和创新,例如使用AI,数字双胞胎和高级材料进行预测维护,从而塑造了航空可靠性工程的未来。还检查了监管框架和标准,从而对合规要求有全面的了解。最后,本文概述了未来的方向,强调需要继续研究和协作以应对预期的挑战,并推动航空系统可靠性工程的进一步进步。
课程名称 学分 先决条件 共同必修课程 SUM 1 SUM 2 秋季获胜 AERO 201 飞行与航空航天系统简介 4.00 ENGR 213 X AERO 290 飞机设计简介 3.00 AERO 201 ENCS 282 X AERO 371 建模与控制系统 3.50 PHYS 205; ENGR 213, ENGR 243 ENGR 311 或 ELEC 342 或 ELEC 364 XX AERO 390 航空航天工程设计项目 3.00 AERO 290, AERO 371; ENCS 282 X AERO 417 标准、法规和认证 3.00 ENGR 201 X* X AERO 471 飞机液压、机械和燃油系统 3.50 AERO 201. 或经部门许可。X AERO 472 飞机气动和电力系统 3.50 AERO 201; ENGR 361 N/AN/AN/AN/A AERO 480 飞行控制系统 3.50 AERO 371 或 ELEC 372 或 MECH 371 或 SOEN 385 X AERO 482 航空电子导航系统 3.00 ENGR 371 或 COMP 233; AERO 371 或 ELEC 372 或 MECH 370 或 SOEN 385 X AERO 483 航空电子系统集成 3.00 AERO 482;ELEC 481 X AERO 490 顶点航空工程设计项目 6.00 AERO 390;ENGR 301。学生必须完成该课程的 75 个学分。 X COEN 212 数字系统设计 I 3.50 MATH 204(Cegep 数学 105) XXX COEN 231 离散数学简介 3.00 MATH 204(Cegep 数学 105) XXX COEN 243 编程方法 I 3.00 MATH 204(Cegep 数学 105) XXX COEN 244 编程方法 II 3.00 COEN 243 或 MECH 215 或 MIAE 215 XXX COEN 311 计算机组织与软件 3.50 COEN 212, COEN 243 XXX COEN 313 数字系统设计 II 3.50 COEN 212, COEN 231 XXX COEN 317 微处理器系统 3.50 COEN 311 或 COMP 228 或 SOEN 228;COEN 313 XX COEN 320 实时系统简介 3.00 COEN 346 或 COMP 346 XX COEN 346 操作系统 3.50 COEN 311;COMP 352 或 COEN 352 XX COEN 352 数据结构和算法 3.00 COEN 231,COEN 244 XXX COEN 366 通信网络和协议 3.50 COEN 346 XX COEN 413 硬件功能验证 3.50 COEN 313 X COEN 421 嵌入式系统设计 4.00 COEN 317,COEN 320;SOEN 341 X COEN 498 计算机工程主题 3.00 需要获得部门许可。 X ELEC 242 连续时间信号和系统 3.00 ELEC 273; ENGR 213 XXX ELEC 251 应用电磁学基础 3.00 ELEC 273 或 ENGR 273 ENGR 233 XX ELEC 273 基本电路分析 3.50 PHYS 205 ENGR 213 XXX ELEC 311 电子学 I 3.50 ELEC 273 XX ELEC 331 电力工程基础 3.50 ELEC 251, ELEC 273 XX ELEC 342 离散时间信号与系统 3.50 ELEC 242 或 ELEC 264 XXX ELEC 351 电磁波与引导结构 3.50 ELEC 242, ELEC 251 XX ELEC 367 数字通信简介 3.50 ELEC 342 或 ELEC 364; ENGR 371 XX ELEC 433 电力电子学 3.50 ELEC 311,ELEC 331 X ELEC 442 高级信号处理 3.50 ELEC 342 或 ELEC 364; ENGR 371 X ELEC 458 电磁兼容技术 3.00 ELEC 351 N/AN/AN/AN/A ELEC 464 无线通信 3.00 ELEC 367 X ELEC 481 线性系统 3.50 AERO 371 或 ELEC 372 或 MECH 371 X ELEC 482 系统优化 3.50 ENGR 391 或 EMAT 391 X ELEC 483 实时计算机控制系统 3.50 AERO 371 或 ELEC 372; ELEC 342 或 ELEC 364 X ELEC 498 电气工程主题 3.00 需要部门许可。N/AN/AN/AN/A ENCS 282 技术写作和交流 3.00 通过工程写作测试(EWT)或 ENCS 272,成绩为 C 或更高。 XXXX ENGR 201 专业实践与责任 1.50 XXX ENGR 202 可持续发展与环境管理 1.50 XXX ENGR 213 应用常微分方程 3.00 MATH 205(Cegep 数学 203) MATH 204(Cegep 数学 105) XXX ENGR 233 应用高等微积分 3.00 MATH 204(Cegep 数学 105);MATH 205(Cegep 数学 203) XXXX ENGR 242 静力学 3.00 ENGR 213 PHYS 204;MATH 204 XXX ENGR 243 动力学 3.00 ENGR 213,ENGR 242 XXX ENGR 244 材料力学 3.75 ENGR 213; ENGR 242 或 ENGR 245 ENGR 233 XXX ENGR 251 热力学 I 3.00 MATH 203 XXXX ENGR 301 工程管理原理与经济学 3.00 XXXX ENGR 361 流体力学 I 3.00 ENGR 213, ENGR 233, ENGR 251 XX EC ENGR 371 工程概率与统计 3.00 ENGR 213, ENGR 233 XXXX ENGR 391 工程数值方法 3.00 ENGR 213, ENGR 233;COMP 248 或 COEN 243 或 MECH 215 或 MIAE 215 或 BCEE 231 EC EC EC ENGR 392 技术对社会的影响 3.00 ENCS 282; ENGR 201,ENGR 202 XXXX ENGR 411 特殊技术报告 1.00 ENCS 282. 需要获得部门许可。XXX Gen. Ed. 通识教育选修课 3.00 参见本科生日历第 71.7110 节 XXXX SOEN 341 软件流程 4.00 COMP 352 或 COEN 352;ENCS 282 XX SOEN 342 软件要求和规范 4.00 SOEN 341 XX SOEN 343 软件架构和设计 4.00 SOEN 341;SOEN 342 XX00 XXXX ENGR 361 流体力学 I 3.00 ENGR 213、ENGR 233、ENGR 251 XX EC ENGR 371 工程概率与统计 3.00 ENGR 213、ENGR 233 XXXX ENGR 391 工程数值方法 3.00 ENGR 213、ENGR 233;COMP 248 或 COEN 243 或 MECH 215 或 MIAE 215 或 BCEE 231 EC EC EC ENGR 392 技术对社会的影响 3.00 ENCS 282;ENGR 201、ENGR 202 XXXX ENGR 411 特殊技术报告 1.00 ENCS 282。需要获得部门许可。XXX Gen. Ed.通识教育选修课 3.00 参见本科生日历第 71.7110 节 XXXX SOEN 341 软件流程 4.00 COMP 352 或 COEN 352;ENCS 282 XX SOEN 342 软件要求和规范 4.00 SOEN 341 XX SOEN 343 软件架构和设计 4.00 SOEN 341;SOEN 342 XX00 XXXX ENGR 361 流体力学 I 3.00 ENGR 213、ENGR 233、ENGR 251 XX EC ENGR 371 工程概率与统计 3.00 ENGR 213、ENGR 233 XXXX ENGR 391 工程数值方法 3.00 ENGR 213、ENGR 233;COMP 248 或 COEN 243 或 MECH 215 或 MIAE 215 或 BCEE 231 EC EC EC ENGR 392 技术对社会的影响 3.00 ENCS 282;ENGR 201、ENGR 202 XXXX ENGR 411 特殊技术报告 1.00 ENCS 282。需要获得部门许可。XXX Gen. Ed.通识教育选修课 3.00 参见本科生日历第 71.7110 节 XXXX SOEN 341 软件流程 4.00 COMP 352 或 COEN 352;ENCS 282 XX SOEN 342 软件要求和规范 4.00 SOEN 341 XX SOEN 343 软件架构和设计 4.00 SOEN 341;SOEN 342 XX
办公时间讲师:每周四下午 2 点在 Weber 311 或通过 Teams https://teams.microsoft.com/l/meetup- join/19%3ameeting_NTdhZmUzNzYtNjNkMS00NzhmLWFjZmYtZWFkODRmMjY2YmE1%40t hread.v2/0?context=%7b%22Tid%22%3a%22482198bb-ae7b-4b25-8b7a- 6d7f32faa083%22%2c%22Oid%22%3a%221d680547-db0a-4825-82df- 3f8be34c830b%22%7d 请注意,Teams 会议最初会将您带入等候室。 TAs:每周二下午 1-2 点在 Weber Atrium(AE 创客空间上方)或通过 Teams https://teams.microsoft.com/l/meetup- join/19%3ameeting_NjBmMWNkZGEtMDMxNy00YmE3LThkZTAtYzA4NjdmMDUxNjE4%40th read.v2/0?context=%7b%22Tid%22%3a%22482198bb-ae7b-4b25-8b7a- 6d7f32faa083%22%2c%22Oid%22%3a%221d680547-db0a-4825-82df- 3f8be34c830b%22%7d 如果您有任何问题、困难、想法或疑虑,请随时通过电子邮件与我们联系,需要。
• 2019 年,新加坡工程师学会 (IES) 工程认证委员会 (EAB) 同意为新加坡新跃大学科技学院的工程学士(航空航天系统)课程颁发全面认证,适用于 2018/2019、2019/2020、2020/2021、2021/2022 和 2022/2023 学年毕业的学生。
2.横向平面的静态稳定性主要由风向标导数(即C n b > 0 或 N b > 0 )和二面角导数(即C l b < 0 或 L b < 0 )决定
2.横向平面的静态稳定性主要由风向标导数(即C n b > 0 或 N b > 0 )和二面角导数(即C l b < 0 或 L b < 0 )决定
写致谢词是结束论文工作的关键步骤。我提前向那些我在这些感谢中可能忘记的人表示歉意。首先,我必须感谢那些通过自己的决定允许我写下这些致谢并发表这篇论文的人。我对 Carsten P ROPPE 先生和 Bertrand I OOSS 先生接受担任这项工作报告员的繁重任务表示最深切的感谢。感谢您详细、亲切、热情的报告以及提出的意见和建议!这些要素以及你们在答辩期间提出的问题都是我个人对工作意义进行科学反思的来源,并为未来的工作形成了多种途径:谢谢你们俩。对于同意担任我的辩护陪审团主席的 Bruno S UDRET 先生,我致以最热烈的感谢。您担任我的评审团主席是我的荣幸和荣幸。最后,我要感谢最后两位同意审查本论文工作的外部评审委员会成员。我向 Béatrice L AURENT -B ONNEAU 女士和 Christian G OGU 先生致以最诚挚的谢意,并对他们对我工作的善意以及在我辩护期间提出的许多问题表示感谢。感谢成员后