本论文由 Maritime Commons 提供。开放获取项目可以下载用于非商业、合理使用的学术目的。未经世界海事大学书面许可,不得将任何项目托管在其他服务器或网站上。如需更多信息,请联系 library@wmu.se。
这些浮标高约 40 英尺,直径相同,配有 7,500 烛光氙气闪光灯,可在 10 英里外看到。它还配有一个可在 3 英里外听到的雾笛。由于它们是无人驾驶的,因此比操作灯塔船要经济得多。
在这篇关于网络安全的硕士论文中,提出了使用 ACARS、ADS-B 和 AIS 电信协议进行无线实验的可访问方法,使用软件定义的无线电,并利用开源和免费软件。这些协议被用作利用 Apache Log4j2 Java 库漏洞的攻击媒介。介绍了使用故意存在漏洞的软件研究 CVE-2021-44228“log4shell”远程代码执行和相关漏洞的方法。通过研究协议规范来评估电信协议传输 CVE-2021-44228 和相关网络攻击字符串的能力,以确定可能的攻击媒介。通过实验展示了可能利用关键任务和生命安全信息系统的实际场景。当满足确定的先决条件时,发现所有三种研究协议都容易受到无线 log4shell 网络攻击。此外,还介绍了有关高严重性 Log4j2 拒绝服务漏洞的新发现。
摘要 许多海事活动,例如装卸和运输货物,主要由长时间的低压力组成,而在复杂的操作或无法预料的危险事件期间,某些时刻压力会很大。机器和人工智能提供的自主性不断提高,开始接管海事领域的某些任务,以降低成本和减少人为错误。然而,以目前的自主技术水平、立法和公众对该技术的信任,这样的解决方案只能消除大多数与低压力时期相关的任务。事实上,许多当前的远程控制解决方案仍然建议依靠人类操作员来处理人工智能难以应对的复杂情况。这种人机关系可能会危及人为因素。令人担忧的是,如果人类用户花费大量时间处理多个不相关的高压力任务,而没有时间减压,这可能会使工人面临越来越大的风险。本文旨在强调该行业开始实施半自主和完全自主海上作业时可能出现的潜在技术、社会和心理问题。
Niusky Pacific Limited(NSPL),以前称为PNG AIR Services Limited(PNGASL),负责管理PNG主权领空160万平方公里的空中交通,从海平面延伸至60,000英尺。为执行其强制性功能,NSPL利用一系列沟通,导航,监视(CNS)设施和空中交通管理(ATM)系统(ATM)系统位于全国各地的战略地点。在过去的五年中,NSPL通过全面的现代化计划进行了巨大的转变,涉及其运营各个方面的现代化和升级。在承认我们国家的山区和其他本地化问题时,我们故意决定引入现代卫星技术,以补充我们的基于地面的CNS/ATM基础设施。
随着全球定位系统 (GPS) 的出现,航海者现在可以比以前更加精确地导航。本讨论重点关注航海图在绘制 GPS 接收器位置时的固有局限性。对于海图制作者来说,海图的准确性必须考虑到航海员视力敏锐度、所用的平版印刷工艺和绘图技术以及特征符号化(例如线宽)的局限性。GPS 用户在使用与 GPS 不同的基准在海图上绘制 GPS 得出的位置时,必须确保进行纬度/经度偏移。所有新的 NGA 海图均基于 WGS 基准编制,该基准与 GPS 接收器在默认基准设置中使用的基准相同,但通常可以选择其他基准。在实施 GPS 之前得出的位置是使用各种光学仪器确定的,这些仪器专注于导航辅助设备、海岸特征或天体。由于了解这些方法的局限性,海员们对海图上描绘的危险物避而远之,包括助航设备、浅滩和障碍物。海图制作者用来定位危险物的可用导航信息和制图过程比海图用户可用的导航手段更准确。现在情况发生了逆转;使用 GPS,海员现在可以获得比用于编制海图的数据更准确的位置定位。由于 GPS 提供了这样的精度,海员现在需要
区域系统 WAAS 是美国运输部和联邦航空管理局合作的成果,是支持 GPS 系统的联邦无线电导航计划的一部分 [Czaplewski & Goward, 2016]。它于 1994 年在北美推出,使飞机能够在起飞和降落期间使用高精度卫星导航(相当于仪表着陆系统 ILS 的 I 类)。直到 WAAS 推出,GPS 才开始用于航空。电离层延迟、时钟漂移和卫星轨道偏差导致 GPS 不够精确,无法满足精确飞机起飞和降落的要求。目前,WAAS 星座由四颗地球静止卫星组成,并向 GPS 接收器发送校正信息,将 GPS 提供的水平位置精度提高到 2-3 米。
使用 CD Horizon ™ Solera ™ Voyager ™ 5.5/6.0mm 脊柱系统时,患者应采取俯卧位或侧卧位(图 2a),并尽量使脊柱前凸最大化。切开皮肤前,建议确认可在前/后 (AP) 和侧位视图中获取足够的椎弓根荧光透视图像。如果在 AP 视图上难以识别 S1 椎弓根,则 Ferguson C 臂视图会有所帮助(图 2b)。为了协助准确插入椎弓根,棘突应位于 AP 视图上椎弓根和椎体终板的中间,并且侧位视图上椎弓根应清晰且单一。
各位读者,我祝你们新年快乐,2018 年一切顺利。对于许多人来说,新年是思考未来和规划来年、引入新想法和创造新机遇的机会。你们位于伦敦的总部团队期待着来年的挑战,并将在新的一年里引入与您和整个行业合作的新想法。一个例子就是我们下一个短期职业发展计划的启动。这将是“事件调查和分析课程”,它将帮助海员了解事故和险情的根本原因。为期两天的计划将支持我们去年 5 月推出的非常成功的《收集海事证据》出版物,并将在我们全球分支机构的支持下交付。我们将继续举办非常成功的导航评估员课程,该课程于 1 月 15 日和 16 日在伦敦开始,并全年在其他地点举行。2017 年我们最大的需求来自香港、新加坡和都柏林,表明国际上对该计划的兴趣非常浓厚。我们将继续利用我们的总裁 Duke Snider 船长的广泛联系来发展我们的冰上导航员认证计划。事实上,我很高兴下个月总统将在极地航行期间发表这篇“焦点文章”(他承诺过!!)。
Page 上午和下午的提问时间 vii 英国皇家空军博物馆演讲厅 3 中队长凯莱特的韦尔斯利 51 1994 年改装前的白羊座 I 86 为极地飞行而改装的白羊座 I 86 白羊座 I 机组人员,1945 年 5 月 87 白羊座 I 飞行的航线 87 白羊座 II,林肯 RE364 88 白羊座 III 机组人员,1951 年 8 月 88 1951 年白羊座 III 的极地冰层 89 1955 年 6 月的白羊座 IV 和 V 89 承办白羊座飞行的不列颠尼亚 90 彗星 4C“老人星” 90 20 世纪 90 年代中期的白羊座最新场景 91 1984 年在肖伯里举行的白羊座演示 91 英国宇航“活动驾驶舱” 122 空军元帅约翰·柯蒂斯爵士 136 大卫·佩奇先生 136 飞行中尉亚历克Ayliffe 137 中校 C G Jefford 138 中队长 Philip Saxon 138 上校 David Broughton 139 空军副元帅 Jack Furner 140 空军准将 Norman Bonnor 141 空军准将 Bill Tyack 141 上校 F C ‘Dickie’ Richardson 144 毕业游行,1954 年 6 月 152