摘要 本研究重点研究了确定作用于具有自适应机翼几何形状(变形几何形状)的微型飞行器 (MAV) 的空气动力的实验和分析方法。本设计的目标是通过使用智能材料修改机翼的弯曲度和厚度,以在飞行阶段实现最佳自主性或航程。因此,研究了最相关的变形配置。它们由马德里理工大学 (UPM) 通过增材制造设计和制造,并在国家航空航天技术研究所 (INTA) 的低速风洞中进行了测试。粒子图像测速技术用于研究不同变形配置的尾流结构。实验测试以 10 m/s 的自由流速度针对从 0º 到 30º 的几个攻角进行。采用了两种理论方法:横向动能积分和 Maskell 理论;分别用于确定诱导阻力系数和升力系数。对模型后面的尾涡系统进行了完整的定性和定量研究,以了解变形几何的气动行为。
“这是一次令人惊奇的飞行,我担任机长已有近八年。这次旅程充满了冒险,有时下雨下雪,有时遇到强风,包括逆风、雷暴和其他导致改道的原因。在巡航高度,在云层之上,我们阳光明媚,空气平稳,在所选的功率设置下航程良好。经过这次长途飞行,我们安全降落在目的地。现在是时候更换驾驶舱机组人员,给飞机加油,巡视一圈并检查油量,然后 EUROCAE 才能重新升空爬升到下一个更高的高度。我非常高兴 Anna 将接管控制权并驾驶 EUROCAE 进行下一航段。她对 EUROCAE 了如指掌,她知道正常和紧急程序,并且她拥有进行下一次飞行所需的等级、技能和经验。祝你着陆愉快,Anna!对我来说,是时候开始准备我的下一次洲际飞行了,同时永远将这次 EUROCAE 飞行留在美好的回忆中。 “向全体机组人员,无论是地面还是空中,致以深深的‘感谢’,”Christian Schleifer-Heingärtner 说道。
论文摘要:北极海冰加速融化对全球气候稳定、海洋生态系统和航行安全构成严峻挑战。为了满足对北极环境进行持续高分辨率监测的需求,本论文探讨了自主维持系统 (SAS) 的开发及其可行性,以实现北极的长期观测。该系统旨在克服传统固定或漂流浮标的局限性,以及无人机和自主水下航行器 (UAV) 的航程和续航能力限制,利用小水线面双体 (SWATH) 无人水面航行器 (USV) 作为核心观测平台。风力驱动的 SWATH 既能利用风帆产生的风能,又能利用水下涡轮机产生的海流能,从而在偏远的北极地区实现持续自主运行。这种混合能量收集方法确保 SAS 能够长时间独立运行,显著提高北极数据收集的空间和时间分辨率。
(摘自 2011 年 5 月 21 日在 Hornet 上发表的演讲)1945 年春天,我在佛罗里达州劳德代尔堡接受训练,驾驶 TBM Avengers 学习成为 TBM 航母飞行员。有一次,我被指派从劳德代尔堡进行导航飞行。航线是从劳德代尔堡向东飞越大西洋约 150 英里,然后向北转向百慕大并折返。飞行时间约为 3.5 小时。一切都很顺利;在导航飞行中没什么可做的,只要确保你在正确的航向上。并在正确的时间出发。第一段航程很顺利。我们转向百慕大,在飞行大约一半的航程中,我瞥了一眼指南针,觉得我偏离了航线。我又看了看,我的两个罗盘都在自己旋转。我试图联系我的僚机,但没有无线电回应。于是我摆动机翼,让他进来,很快通过手势确定我们遇到了同样的问题。幸运的是,那天天气晴朗。太阳还没落山。已经是下午晚些时候了,所以我只是转身朝着落日的方向飞去。当我们接近陆地时,罗盘继续疯狂地旋转,当我们接近海岸时,三件事同时发生了:我收到了劳德代尔堡塔台的通讯,罗盘恢复了直立,我可以看到陆地了。我们正飞到棕榈滩南部。我联系了我的僚机,剩下的飞行非常顺利,我们降落了。我们试图向操作值班人员和维修人员解释我们的问题,他们说“是的,是的”。第二天我们下来查看飞机的情况,飞机没有任何问题。他们的态度是,我们是两个迷路的愚蠢少尉。我们对此无能为力。大约 8 个月后,5 架 TBM Avengers 从劳德代尔堡的同一站出发,飞行了与我们相同或非常相似的航班,这 5 架飞机再也没有回来。他们完全消失了。那些飞机发来一些通讯,说海面看起来不对劲,海洋看起来不对劲,罗盘也坏了。这是他们最后一次听到他们的消息。随后,一架“复仇者”搜索机出动搜索他们,并发出信号称他们正遭遇强风。那是最后一次看到那架 TBM。它彻底消失了。后来我们终于弄清楚了,我们和其他飞机飞行的区域是“百慕大三角”区域。
空中力量被描述为战争的决定性因素。1 空中力量的速度、航程和灵活性使其具有非对称优势,能够迅速果断地塑造战争并实现目标。空中力量可能无法单独赢得战争,但没有空中力量,现代战争就无法取胜。因此,新加坡共和国空军 (RSAF) 的存在及其使命构成了新加坡武装部队 (SAF) 作战能力的重要组成部分。新加坡共和国空军为新加坡武装部队提供空中力量的历程经历了几次演变,每次都重塑自我以提供新的能力和任务集。这段历程始于 1968 年新加坡防空司令部 (SADC) 的成立,从英国皇家空军继承了基本的防空导弹和系统以及几架赛斯纳教练机,为新加坡提供了基本的防空能力。在短短的 45 年内,新加坡空军已发展成为第三代空军,拥有广泛的技术先进能力,能够在和平和战时为全方位作战提供空中力量。
Damir Poles、Angela Nuic、Vincent Mouillet、欧洲空中导航安全组织、法国布雷蒂尼-苏尔-奥尔日 (EUROCONTROL) 摘要 本文分析了 BADA 飞机性能模型的功能,并讨论了 BADA 模型为多种飞机类型以及飞机在飞行过程中的不同操作方式提供完整飞行包线内飞机性能的精确建模能力。本文的重点是 BADA 对复杂飞机操作的支持。简要介绍了现有的两个 BADA 系列及其主要特征。讨论了复杂的飞行指令和操作机制 - 基于成本指数的经济爬升、巡航和下降、最大航程巡航、远程巡航、最佳高度和最大续航巡航 - 被认为是支持优化飞行执行的关键特征。介绍了优化程序及其推导的方程,并展示了 BADA 模型支持这些飞行操作的能力。结果表明,BADA 4 可以成功用于复杂的指令和操作机制,而 BADA 3 的使用则受到限制。最后,介绍了专门针对 BADA 推力模型的验证实验结果。
摘要 NASA 正在对先进空中机动 (AAM) 飞机和操作进行研究。AAM 任务的特点是航程低于 300 海里,包括乡村和城市操作、载客和货运。城市空中机动 (UAM) 是 AAM 的一个子集,是预计具有最大经济效益且最难开发的部分。NASA 革命性垂直升力技术项目正在开发 UAM VTOL 飞机设计,可用于集中和指导研究活动,以支持新兴航空市场的飞机开发。这些 NASA 概念飞行器涵盖了相关的 UAM 功能和技术,包括推进架构、高效而安静的转子以及飞机空气动力学性能和相互作用。所采用的配置是通用的,在外观和设计细节上有意与知名的行业安排不同。这些 UAM 概念飞机已经用于许多工程研究,包括满足安全要求、实现良好的操纵品质以及将噪音降低到直升机认证水平以下的工作。以概念车为重点,对先进空中机动飞机的工程进行了观察。
F/A-18 大黄蜂是一种单座和双座、双引擎、多任务战斗机/攻击机,可从航空母舰或陆地基地起飞。F/A-18 由海军和海军陆战队使用,可执行多种任务:空中优势、战斗机护航、压制敌方防御、侦察、前方空中控制、近距离和深度空中支援以及昼夜打击任务。本海军训练系统计划是一份包含所有 F/A-18 系列的生命周期文件。最新的 F/A-18 飞机是 F/A-18E/F,它是 17 多年来在 1,254 架 F/A-18A/B/C/D 飞机上获得的经验和教训的进化升级版。F/A-18E/F 提供更大的航程和续航能力,能够携带更重的有效载荷,增加的返回能力,增强的生存能力,以及内置的潜力,可以整合应对新兴威胁的未来系统和技术,同时保持比 F/A-18C/D 更高的空战能力。F/A-18 飞机的所有版本都处于国防采购系统的生产和部署运营和支持阶段。
摘要 航空航天业正处于复兴时期,在空中和太空两方面都扩展到新的商业领域,包括无人机系统 (UAS)、按需机动 (ODM)、个人飞行器 (PAV) 和商业深空。这些新领域在最初的规划中需要考虑新的安全性、可靠性,在某些情况下,还需要考虑可行性的性能方法。例如,由于数量庞大,如果目前的事故率普遍存在,UAS/ODM/PAV 飞机可能会以不可接受的频率坠毁,造成生命和财产损失。此外,如果从事商业太空活动的人类有严重的健康问题和/或火箭可行性问题/坠毁率不可接受,这些新的、主要市场(每年 1 万亿美元左右)可能会迅速缩减,直到实施令人满意且有效的变革,从而产生额外的费用、延误和收入减少。本报告讨论了此类安全性和可靠性问题,包括:性能增强可能性,例如启用空中交通管制系统 (ATC)、防撞车辆、增加航空航程、清除空间碎片和太空人类健康。
摘要 NASA 正在对先进空中机动 (AAM) 飞机和操作进行调查。AAM 任务的特点是航程低于 300 海里,包括乡村和城市运营、载客和货运。城市空中机动 (UAM) 是 AAM 的一个子集,是预计具有最大经济效益且最难开发的部分。NASA 革命性垂直升力技术项目正在开发 UAM VTOL 飞机设计,可用于集中和指导研究活动,以支持新兴航空市场的飞机开发。这些 NASA 概念车涵盖了相关的 UAM 功能和技术,包括推进架构、高效而安静的转子以及飞机空气动力学性能和相互作用。采用的配置是通用的,在外观和设计细节上有意与著名的行业安排不同。这些 UAM 概念飞机已用于众多工程研究,包括满足安全要求、实现良好的操控品质以及将噪音降低到直升机认证水平以下的工作。重点关注概念车辆,对先进空中机动飞机的工程进行了观察。