过去 30 年来,太空用陀螺仪技术不断发展,并取得了显著成果,产品应用十分广泛。在欧洲,光纤陀螺仪 (FOG) 技术为卫星应用提供了最高性能,目前正在满足所有当前任务需求。陀螺仪领域的高性能部分由美国的半球形谐振陀螺仪 (HRG) 技术主导。在欧洲,这项技术也(但最近)在地面应用中实现了非常高的性能。新陀螺仪技术领域是一个充满活力的战略研究领域,由众多高精度海洋、陆地和航空应用引领。目前应用于角运动和线性运动传感的一项有前途的技术是原子干涉仪 (AI),但尚未转化为产品。基于冷原子干涉 (CAI) 的陀螺仪已证明其性能指标比 FOG 产品高出约 2 个数量级。对于其他类型的用途,磁流体动力 (MHD) 技术可以在有限的体积和质量内实现非常高的带宽测量,从而实现镜子的主动视线稳定。
摘要 - 由人脑的结构和功能所吸引的神经形态计算已成为开发节能和强大的计算系统的有前途的方法。神经形态计算在航空航天应用中提供了显着的处理速度和功耗优势。这两个因素对于实时数据分析和决策至关重要。然而,刺激性的空间环境特别是在辐射的存在下,对这些计算系统的可靠性和性能构成了重大挑战。本文全面地调查了航空航天应用中抗辐射神经形态计算系统的整合。我们探讨了空间辐射,审查现有的解决方案和开发,当前对空间应用中使用的神经形态计算系统的案例研究,讨论未来方向以及讨论该技术在未来太空任务中的潜在好处。索引项 - 神经局计算;航空应用;抗辐射计算;太空环境;节能计算;实时数据分析;决策;未来的太空任务。
摘要:本文介绍了一种专为低空航空应用量身定制的综合人工智能操作系统,该系统集成了尖端技术,以提高性能、安全性和效率。该系统由六个核心组件组成:OrinFlight OS,一种针对实时任务执行优化的高性能操作系统;UnitedVision,一种支持高级图像分析的多功能视觉处理模块;UnitedSense,一种提供精确环境建模的多传感器融合模块;UnitedNavigator,一种动态路径规划和导航系统;UnitedMatrix,支持多无人机协调和任务执行;UnitedInSight,一个用于监控和管理的地面站。在 UA DevKit 低代码平台的补充下,该系统促进了用户友好的定制和应用程序开发。利用 NVIDIA Orin 的计算能力和先进的 AI 算法,该系统解决了现代航空中的复杂挑战,为导航、感知和协作操作提供了强大的解决方案。这项工作重点介绍了系统的架构、功能和潜在应用,展示了其满足智能航空环境需求的能力。
摘要 目前,许多实验正在针对未来的 DGPS 进近和着陆系统进行,以提高飞机导航的质量。在航空应用中使用 C/A 码接收器需要很高的可靠性和完整性。本研究调查了使用 C/A 码并在航空电子环境内导航的 GPS 接收器的标准定位服务的潜在电磁干扰源。来自使用与 GPS 和 G LONASS 频段相邻频率的多个通信系统的射频发射给 GNSS 接收带来了相当大的问题。过于拥挤的频谱和微弱的 GPS 信号使来自各种来源的射频干扰成为潜在威胁,必须仔细检查。本文旨在概述潜在的干扰源及其解决方案。确定了这些 RFI 源,并评估了 GPS 和 GNSS 受到这种干扰的脆弱性。这项研究定量地了解了干扰的影响。针对最重要的干扰源,研究了它们的技术特性、干扰距离以及保持接收器良好性能所需的隔离或抑制要求。还研究了候选缓解技术,并建议在适当的标准中采用选定的技术。 1. 简介 通信可用的典型信号
摘要 - 为了确保在设计阶段的早期系统的可靠性,使模型能够预测暴露于静电排放(ESD)的系统的行为变得至关重要。这是越来越多的必要性,因为嵌入式电子产品的数量正在增长,并且由于它们被用于人们安全的应用,例如汽车和航空应用。到目前为止,准静态保护设备的准静态模型成功地在失败预测(主要是硬故障)中提供了相当好的结果。今天,此类设备的频率范围的增加需要动态模型能够重现其瞬态行为。在本文中,我们调查了通常在频域中使用的线性设备建模的常规方法,可用于获得ESD保护设备的等效频率模型,ESD保护设备表现出非线性行为。提出并详细介绍了从传输线脉冲(TLP)测量中提取ESD保护香料模型的方法,以解决瞬态和频率模拟。我们证明,在明确的条件下,此类频率模型可以提供准确的结果,以预测与保护设备触发延迟相关的过冲。对模型的验证是在三个现成设备上的TLP和人类金属模型(HMM)条件下进行的。
有许多物联网设备具有直接的潜在航空应用,包括测量产品和工厂的性能、将传感器放入乘客座椅、个性化环境条件以及通过可穿戴设备支持半自动驾驶操作。连接组织内的资产是优化其利用率和效率的第一步。实时数据使组织能够预测和计划维护要求,减少时间,管理利用率并模拟场景以提高 OEE。高价值制造业弹射器正在与行业合作,以确定如何使用简单的物联网设备提供有价值的信息来支持更好的决策。例如,测量机器的用电量可以确定准确的利用率。将产品和资产连接在一起可以实现动态调度和灵活的工厂自动化,其中可以通过同一工厂管理多种产品。将工作站连接到产品和流程可以对质量产生深远影响,提高操作员的能力并创建灵活、动态的工作区域。智能工具通过交互式平板电脑或增强现实耳机将机器和操作员连接起来。激光定位和标记,结合智能夹具,可以确保流程正确完成并提高质量。大数据分析当前状态
8 ORCID:0000-0001-6460-7539,vlgal@gin.keldysh.ru 摘要 本文专门介绍了民用飞机驾驶舱的飞行员显示可视化系统。讨论了现代飞行员显示的不同内容。考虑了航空电子设备可视化系统开发的特殊性。民航系统中使用的所有软件都是安全关键的,必须符合国际安全标准。这对所使用的硬件和软件开发过程都提出了额外的要求。飞行员显示可视化系统的核心是 OpenGL 安全关键 (SC) 库。本文介绍了我们阐述的软件和硬件 OpenGL SC 实现。我们描述了通过针对航空应用的具体情况优化 OpenGL SC 代码、使用多核处理器以及最后通过开发利用 GPU 硬件加速的库来提高渲染速度的方面。本文报告了针对实际航空应用测得的渲染速度。只有相对简单的应用程序才能在不使用 GPU 的情况下以可接受的帧速率进行渲染。此外,还讨论了可视化系统认证的进一步发展和可能性。精心设计的可视化软件旨在与俄罗斯实时操作系统 JetOS 一起使用。
关于 Jeppesen Mobile Jeppesen Mobile 是 Jeppesen 和 Hilton Software(WingX 的开发商)合作协议的成果。Jeppesen Mobile 航空应用套件由飞行员设计,专为飞行员设计,优化了掌上电脑和智能手机的功能。通过将 Hilton Software 的技术优势与 Jeppesen 知名的航空数据库相结合,该应用套件为飞行员提供了强大的飞行前和飞行后功能。Jeppesen Mobile 提供快速访问重量和平衡、路线规划、文本和图形天气、机场/设施目录信息、带有机场图的 JeppGuide 信息、滑行位置信息、动态飞行导航器、文件和表格、E6B 飞行计算器、飞行员货币到期日、日出/日落计算器和飞机注册号搜索的功能。凭借其先进的互联网技术,所有 Jeppesen Mobile 数据库更新和软件升级都可以直接从互联网传输到您的 PDA 或智能手机(无需 PC)。而且,如果您的下载因任何原因中断,我们的下载恢复功能可确保您在需要时获得所需的内容。
高管摘要混合动力推进可能在未来的空中运输系统中,有40多名乘客的区域飞机起着更为重要的作用,气候影响降低。在小子中,开发了两个混合电动区域(她)飞机概念,即保守的飞机和一个激进的概念。需要能量密度的电池技术来实现区域飞机的混合电力推进。此可交付的可交付结果报告了对Imothep工作包4(WP4)能量生成的框架内的全固定状态锂anode(ASS-LA)电池进行系统调查的结果。探索和说明了关于ass-la电池开发的一般策略。重点放在ass-la电池的关键组件上的开发,包括高性能复合阴极,健壮的混合固体电解质(HSE)膜和钝化的LI金属作为阳极。总共已经组装并测试了260多个2016型硬币细胞。未来重点是为航空应用开发高性能ASSB。专有权利声明:
摘要:在过去的20年中,具有内部晶格和封闭外壳的内部晶格的轻质结构,由于其刚度的提高,屈曲强度,多功能设计和能量吸收,因此引起了很多关注。添加剂制造的典型几何自由允许为航空应用设计更轻,更硬和更有效的结构。激光粉床融合技术,特别是可以制造具有复杂几何形状的金属零件,从而改变了机械组件的设计和制造方式。这项研究提出了一种重新设计原始卫星结构的方法,该卫星结构由墙壁和肋骨组成,并具有封闭的晶格设计。提出的新结构必须遵守机械性能,尺寸准确性和重量的限制要求。最具挑战性的是原始卫星根据传统制造而设计的第一个频率请求。为了克服这个问题,开发了特定的框架,以局部增厚晶格的临界区域。使用新设计允许符合动态行为并获得维护机械性能的重量。这种主要结构的添加剂制造的制造证明了这项新技术可以满足航空航天局中具有挑战性的请求的可行性。