人工智能和数据分析 (AIDA) 是当今世界的重要工具,彻底改变了商业、公共卫生、环境、科学、技术、社会科学等各个领域的范式。它们提供了有益的方法,可以自动处理大量和各种数据,获取基本信息,并促进生活各个方面的决策。地球大数据,即从太空收集用于地球观测的大数据,为地球和环境科学提供了新的机会,彻底改变了理解地球系统和动态、人与环境相互作用以及自然和人类系统可持续性的方法和技术。地理空间分析使用来自各种技术(卫星图像、GPS、位置传感器、社交媒体、移动设备)的数据来分析和可视化地理参考数据,以了解现象并发现人与地点之间复杂关系中的模式和趋势。地理空间分析在传统类型的数据中添加了位置和时间,这种额外的背景可以更全面地了解现象和事件,更准确地预测模式和趋势,并实现实时可视化。本课程提供有关地球观测和地理空间人工智能 (EO-GeoAI) 各种问题的通识教育。探索从太空获取的图像/数据中识别和评估地球特征的方法。航空照片、地球资源卫星图像、气象卫星图像、激光雷达、无人机图像、社交媒体、移动设备等用于深入了解地球表面重要的物理、经济和文化特征。将进一步介绍遥感、地理空间人工智能和地理空间大数据分析中的机器学习基础知识。
报告。该地区湿地状况信息是 Glenn Smith (FWS) 辛勤工作的成果,他对航空照片进行了照片解读。质量控制由佛罗里达州圣彼得堡的国家湿地清单中心 (NWIC) 提供。以下个人和组织对草图进行了现场审查:Margaret Gargiullo 和 Marc Matsil(纽约市公园与娱乐部,自然资源组);Ralph Tiner 和 David Edelstein(FWS)、Patrick Nejand、Doug Adamo 和 Sandra Creamer(美国陆军工程兵团)、Dan Montella、Mario Paula、Ericka Petrovich、John Cantilli、Mary Anne Thiesing、Kathleen Drake、Bob Montgomerie、Dave Pohle 和 Karen Sullivan(EPA); Bill Woods 和 Ome i Medford Ryan(纽约市城市规划局);Dorrie Rosen(史坦顿岛蓝带);Richard Lynch(西湾木兰生物保护区);Ellen Hartig、Howard Snyder、Ann Litke 和 Eymund Diegel(纽约市奥杜邦协会湿地委员会);Ray Matarazzo 和 Ed Johnson(史坦顿岛艺术与科学研究所);Bonnie Petite、Olga Frederico 和 John Rooney(松橡树林保护者)。这些人的贡献完善了清单的最终结果。Glenn Smith 对草图进行了最终编辑。NWIC 为该项目制作了最终地图和数字数据。特别感谢 Don Wo odard、Greg Pipkin、Becky Stanley 和 Kurt Snider。Matt Starr 和 Gabe DeAllesio(美国鱼类和野生动物管理局)协助准备了英亩
iii.北海岸私有原生森林的生长状况和生产力地图。新南威尔士州 DPI 委托 ForeSense Pty Ltd 使用 ADS 40/80 传感器获取的数字航空照片 (DAP) 图像开发此图层。2007 年至 2014 年之间的图像以马赛克瓷砖 (n. =59) 的形式从新南威尔士州财政、服务和创新部的空间数据服务中获取。新南威尔士州 DPI 为 ForeSense Pty Ltd 提供了约 1,000,000 公顷私有原生森林的基础地图图层。ForeSense Pty Ltd 随后使用 3D 数字航空摄影解释 (API) 软件绘制了基础地图区域内 2 个面积为 25 公顷或更大的同质私有原生森林区域的生长状况和生产力。测绘过程捕获了成熟树冠高度(m)数据,高度值分为 10 个类别:15、20、25、30、35、40、45、50、55 和 65+。高度低于 15 米的“非生产性”森林类型 3 被排除在外。最终产品被转换为可在 Google Earth 中查看的 kmz 文件。模型中使用的测绘树冠高度数据是一个裁剪层,范围为 395,782 公顷。
在以龟草 (Thalassia testudinum) 为主的海湾进行休闲划船活动,导致螺旋桨疤痕高密度区域,可能损害海洋栖息地和生态系统服务。鉴于龟草的生长习性,大量螺旋桨疤痕的形成可能需要长达 10 年的时间才能达到正常密度。通过航空照片解释进行评估,并安装可生物降解的沉积物管,可以促进受影响的龟草床的恢复。Atkins 与佛罗里达州环境保护部 (FDEP) 中央狭长地带水生保护区工作人员合作,完成了一个多阶段修复项目,以评估、绘制地图、量化沉积物损失,并制定/实施修复策略,以解决佛罗里达狭长地带圣约瑟夫湾水生保护区 (AP) 的螺旋桨疤痕影响。支柱疤痕评估基于小型无人驾驶飞行器 (UAV) 获取的 AP 内海草床的高分辨率航空图像。使用照片解释和半自动特征提取软件分析所得图像,以创建支柱疤痕图,并通过广泛的基于现场的签名开发、地面控制以及空间和主题评估进行验证。利用热点分析、量化和分类结果来确定疤痕密度最高的区域,以便进行潜在修复。分析确定了位于 AP 的 11 个目标区域中 789 个潜在候选疤痕,总面积为 1 公顷。AP 修复工作最终在 379 个支柱疤痕中部署了 43,954 个沉积物管,相当于近 40 公里或 0.8 公顷的修复支柱疤痕。
简介。联邦政府的几个机构负责在填海活动区域内进行标准调查。已经并正在为特殊目的进行其他调查。地籍调查。地籍调查的目的是对房地产的数量和所有权进行正式登记。联邦政府根据美国公共土地法对公共土地进行了地籍调查。公共土地调查从俄亥俄河西北地区的领土开始。德克萨斯州不受联邦公共土地法的约束。土地调查属于土地管理局 (BLM) 的管辖范围。有关地籍调查的详细信息可从《美国公共土地调查说明书》中获得,2009 年是 BLM 发布的当前版本。基本水平和垂直控制。商务部下属机构国家大地测量局 (NGS) 建立了基本水平和垂直控制网络。网络的调整和扩展正在不断进行中。应咨询 NGS 以获取有关可用的调整和控制的最新信息。美国地质调查局 (USGS) 在其地形测绘计划中根据需要建立了额外的控制。地形测绘。地质调查局开展了系统的地形测绘计划。调查局发布了各种类型和比例的地图。航空摄影。美国农业部 (USDA) 已获得广泛的航空摄影覆盖。美国农业服务局 (FSA)、美国自然资源保护局 (NRCS) 和美国森林服务局 (Forest Service) 已利用垂直立体航空照片(自 1950 年代起)和数字正射影像(自 2003 年开始)覆盖了西部各州的大部分农业和森林地区。此外,国家农业影像
摘要。如今,许多摄影测量测绘方法都使用无人机来检索和记录有关地球上物体的数据。这是因为使用配备 GNSS(全球导航卫星系统)的无人机进行测量比租用飞机非常高效且更便宜,它还可以飞越难以到达的区域并大大缩短时间。罗马尼亚的无人机技术发展仍处于起步阶段,立法框架甚至对小型无人机也施加了某些限制。因此,为了使用该飞机,需要获得罗马尼亚民航局的批准,以及国防部的批准。通过这种方式,飞行在距离、高度和面积方面受到监管。本研究的目的是实现和技术详述通过摄影测量技术(UAS/UAV)生成正射影像图和三维模型的工作流程,这些工作流程可用于各种地形地籍工作或作为叠加分析的主要地理空间数据,用于其他各个领域:城市化、农业、空间规划、地貌学等。本文介绍了无人机摄影测量数据在阿拉德县 Labaşinţ 地区测绘中的应用结果,使用 WingtraOne VTOL 尾随无人机,配备索尼 RX1RII 相机,配备 42.4 兆像素 CMOS 传感器、35 毫米、全画幅和 GNSS 系统。精度高。数据处理的最后阶段包括生成正射影像平面、马赛克、栅格图像、TIN 和 DEM 格式以及生成点云。目前,无人机在空间科学领域的应用需求很高,因为与卫星系统相比,无人机操作相对简单,成本相对低廉,尤其是高分辨率图像。使用无人机的好处之一是,它们可以拍摄航空照片,然后对其进行处理以进行测绘,从而可用于支持空间数据的获取。关键词:WingtraOne、Pix4Dmapper、DEM、DTM、DSM、Labasint、领土分析。
河口海滩是随处可见但研究不足的沿海系统。混合流体动力学过程(例如潮汐和波浪强迫)以及相邻沉积特征(例如涨潮三角洲 (FTD))的影响导致复杂的形态动力学过程。因此,人们对这些重要沿海系统的动态和演化了解甚少。本研究综合了在澳大利亚东南部河口海滩进行的一系列跨多个时间尺度的分析。测量了近岸波浪和洋流,并利用它们确定了 2007 年至 2010 年间导致海滩季节性变化到年度变化的过程。将这些结果与 1963 年至 2006 年航拍照片确定的十年尺度海滩变化进行了比较。我们发现,向内河口西输送沉积物是主要的近岸过程,导致海滩东部地区(靠近河口入口)受到侵蚀,西部地区在一年的时间尺度上发生淤积。冬季风暴潮期间,沿岸沉积物发生输送,导致更多暴露地点受到侵蚀,受保护区域出现有限的淤积,这很可能是由于洪水潮汐三角洲的沉积物输入造成的。然而,蔓延到河口的严重风暴潮事件导致整个海滩的沉积物流失和侵蚀,在研究期间没有恢复。短期至中期(几天到几年)分析中观察到的侵蚀过程很可能是导致航空照片记录中观察到的长期海岸线后退的条件。自 1963 年以来的长期海岸线后退可能是由于 FTD 移动导致的负沉积物平衡和浅滩湾东部地区缺乏沉积物输入造成的。除非海洋来源的沉积物输入增加或海岸线干预措施持续,否则海岸线后退可能会持续下去。
摘要。如今,许多摄影测量测绘方法都使用无人机来检索和记录有关地球上物体的数据。这是因为与租用飞机相比,使用配备 GNSS(全球导航卫星系统)的无人机进行测量非常高效且更便宜,它还可以飞越难以到达的区域并大大缩短时间。罗马尼亚的无人机技术发展仍处于起步阶段,立法框架甚至对小型无人机也施加了一定的限制。因此,为了使用飞机,需要获得罗马尼亚民航局的批准,以及国防部的批准。这样,飞行在距离、高度和面积方面都受到管制。该研究的目的是实现并详细说明通过摄影测量技术(UAS/UAV)生成正射影像图和三维模型的工作流程,这些工作流程可用于各种地形地籍工作或作为叠加分析的主要地理空间数据,用于城市化、农业、空间规划、地貌学等其他各个领域。本文介绍了使用无人机摄影测量数据对阿拉德县 Labaşinţ 地区进行测绘的结果,使用 WingtraOne VTOL 尾随无人机,配备索尼 RX1RII 相机,配备 42.4 兆像素 CMOS 传感器、35 毫米、全画幅和 GNSS 系统。高精度。数据处理的最后阶段包括生成正射影像平面、马赛克、栅格图像、TIN 和 DEM 格式以及生成点云。目前,无人机在地理空间科学领域的应用需求很高,因为与卫星系统相比,无人机操作相对简单,成本相对低廉,尤其是高分辨率图像。使用无人机的好处之一是,它们可以拍摄航空照片,然后对其进行处理以进行测绘,从而可用于支持空间数据的获取。关键词:WingtraOne、Pix4Dmapper、DEM、DTM、DSM、Labasint、领土分析。
本研究调查了受切蚀影响的支流植被次级水道的水文和沉积机制:卢瓦尔河(法国)。在 2000 年至 2003 年发生的洪水事件期间和之后,对位于 Bre´he´mont 研究地点(源头下游 790 公里)的植被次级水道进行了观察和测量。使用低海拔航空照片、地形和水深测量以及冲刷链分析了形态变化和沉积物动态。还通过在不同洪水阶段对流速和流向进行的测量分析了水道的水力行为。为了量化木本植被对水流阻力的影响,根据现场测量确定了树带的粗糙度。护岸层破坏对推移质脉冲的影响、单次洪水事件期间沉积过程的变化以及植被对床形的固定均被确定为影响研究水道行为的关键过程。地形调查表明,水道上游部分的沉积物动力学相当显著,并且沉积物预算根据考虑的时间尺度而不同。此外,还展示了次级水道的不对称行为:植被区沉积和保存的沉积物数量减少,与三级水道中观察到的物质旁路形成鲜明对比。流速和流向测量表明,这些参数随水位和水道的形态单元(水池、浅滩、植被区)而变化。在低流量期间,次级水道的冲刷和颗粒输出是卢瓦尔河主水道沉积物供应减少的结果。对于这些水位,沉积发生在速度和湍流减少的池中,而三级通道受到侵蚀。在高流量期间,主通道中可用的大量沉积物会流入次级通道中由浅滩和沙洲形成的临时储存区。位于次级通道下游的植被区在低流量时使细流偏转,并在高水位时降低流速。在该区域观察到的沉积物增生对流动和沉积过程产生反馈。D 2005 Elsevier B.V. 保留所有权利。
简介。联邦政府的几个机构负责在填海活动区域内进行标准调查。已经并正在为特殊目的进行其他调查。地籍调查。地籍调查的目的是对房地产的数量和所有权进行正式登记。联邦政府根据美国公共土地法对公共土地进行了地籍调查。公共土地调查从俄亥俄河西北地区的领土开始。德克萨斯州不受联邦公共土地法的约束。土地调查属于土地管理局 (BLM) 的管辖范围。有关地籍调查的详细信息可从《美国公共土地调查说明书》中获得,2009 年是 BLM 发布的当前版本。基本水平和垂直控制。商务部下属机构国家大地测量局 (NGS) 建立了基本水平和垂直控制网络。网络的调整和扩展正在不断进行中。应咨询 NGS 以获取有关可用的调整和控制的最新信息。美国地质调查局 (USGS) 在其地形测绘计划中根据需要建立了额外的控制。地形测绘。地质调查局开展了系统的地形测绘计划。调查局发布了各种类型和比例的地图。航空摄影。美国农业部 (USDA) 已获得广泛的航空摄影覆盖。美国农业服务局 (FSA)、自然资源保护局 (NRCS) 和美国森林服务局 (Forest Service) 已使用垂直立体航空照片(自 1950 年代开始)和数字正射影像(自 2003 年开始)覆盖了西部各州的大部分农业和森林地区。此外,由美国农业部航空摄影实地办公室 (APFO)(位于犹他州盐湖城)管理的国家农业图像计划 (NAIP) 在美国大陆的农业生长季节获取航空图像。美国地质调查局已获取大量航空摄影和光探测与测距 (LiDAR) 数据,用于其地形测绘工作。私人航空测绘和卫星图像公司也其他获取航空摄影资料的联邦机构包括 BLM、国家地理空间情报局 (NGA)、美国陆军工程兵团 (USACE)、NGS。
