摘要:区域和全球航空旅行的持续增长导致空中和地面交通拥堵加剧。尽管由于经济衰退和灾难事件偶尔会出现暂时的衰退,但自 20 世纪 60 年代以来,所有旅行的平均增长率一直很高。结果:拥堵制约了航空运输业的发展,造成了航班延误并降低了整个系统的效率,迫切需要开发更有效的空中交通管理 (ATM) 方法。新的 ATM 技术、程序、空域自动化方法和决策支持工具正在研究和开发中,以便在从未来几年到 2020 年及以后的时间范围内部署。随着这些方法变得越来越先进和复杂,空中交通管理系统中相关实体之间信息生成、共享和传输的要求也急剧增加。然而,当前的航空通信系统不足以满足这些先进空中交通系统所产生的未来信息传输需求。因此,NASA 格伦研究中心正在开展研究项目,以开发能够满足这些未来要求的通信方法和关键技术。作为这一过程的一部分,研究、研讨会、测试和实验以及研究和分析已经确定了许多研究和技术开发需求。本文的目的是概述在这些活动中确定的关键研究和技术需求,并解释如何确定这些需求。
摘要 — 为了在所有飞行阶段提供无缝覆盖,航空通信系统 (ACS) 必须整合天基、空基和地面平台,以形成面向航空的天空地一体化网络 (SAGIN)。在大陆地区,L 波段航空宽带通信 (ABC) 因支持空中交通管理 (ATM) 现代化而越来越受欢迎。然而,由于传统系统,L 波段 ABC 面临着频谱拥塞和严重干扰的挑战。为了解决这些问题,我们提出了一种新颖的多天线辅助 L 波段 ABC 范式来解决可靠和高速率空对地 (A2G) 传输的关键问题。具体而言,我们首先介绍 ABC 的发展路线图。此外,我们讨论了 L 波段 ABC 传播环境的特殊性以及相关多天线技术的独特挑战。为了克服这些挑战,我们从信道估计、可靠传输和多址接入的角度提出了一种先进的多天线辅助 L 波段 ABC 范式。最后,我们阐明了 SAGIN 航空部分的引人注目的研究方向。
摘要 — 为了在所有飞行阶段提供无缝覆盖,航空通信系统 (ACS) 必须整合天基、空基和地面平台,以形成面向航空的天空地一体化网络 (SAGIN)。在大陆地区,L 波段航空宽带通信 (ABC) 因支持空中交通管理 (ATM) 现代化而越来越受欢迎。然而,由于传统系统,L 波段 ABC 面临着频谱拥塞和严重干扰的挑战。为了解决这些问题,我们提出了一种新颖的多天线辅助 L 波段 ABC 范式来解决可靠和高速率空对地 (A2G) 传输的关键问题。具体而言,我们首先介绍 ABC 的发展路线图。此外,我们讨论了 L 波段 ABC 传播环境的特殊性以及相关多天线技术的独特挑战。为了克服这些挑战,我们从信道估计、可靠传输和多址接入的角度提出了一种先进的多天线辅助 L 波段 ABC 范式。最后,我们阐明了 SAGIN 航空部分的引人注目的研究方向。
1 .简介。。。。。。。。。。。。。。。。。。。。。。。.3 1.1 .要求语言 ...。 。 。 。 。 。 。 。 . . . . . . div> . . 4 2 . 术语 . . 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 4 3 。 动机和用例 . . . . . . 。 。 。 。 。 。 。 。 . . . . . . div> 5 3.1 . 当今的语音通信 . . . . . . . . . div> . . . . . . 5 3.2 . 当今的数据通信 . . . . . < /div> . . . . . . . . . . . div> 6 4 . 出处和文件 . . . . 。 。 。 。 。 。 。 。 < /div> . . . . . . . 7 5 . 适用性 . . 。 。 。 。 。 。 。 。 < /div> . . . . . . . . . . . . . . . 8 5.1 . 进展超越最先进的技术。 . . .。。。。。。。。...... div>..4 2 .术语 ..。。。。。。。。。。。。。。。。。。。。。。。4 3 。动机和用例 ......。 。 。 。 。 。 。 。 . . . . . . div> 5 3.1 . 当今的语音通信 . . . . . . . . . div> . . . . . . 5 3.2 . 当今的数据通信 . . . . . < /div> . . . . . . . . . . . div> 6 4 . 出处和文件 . . . . 。 。 。 。 。 。 。 。 < /div> . . . . . . . 7 5 . 适用性 . . 。 。 。 。 。 。 。 。 < /div> . . . . . .。。。。。。。。...... div>5 3.1 .当今的语音通信 ......... div>......5 3.2 .当今的数据通信 ..... < /div>........... div>6 4 .出处和文件 ....。。。。。。。。 < /div>.......7 5 .适用性 ..。。。。。。。。 < /div>...............8 5.1 .进展超越最先进的技术。...。。。。。。8 5.1.1.优先事项。。。。。。。。。。。。。。。。。。。。。8 5.1.2.安全。。。。。。。。。。。。。。。。。。。。。。8 5.1.3。高数据速率。。。。。。。。。。。。。。。。。。。9 5.2.应用程序。。。。。。。。。。。。。。。。。。。。。。。9 5.2.1.空对地多重链路。。。。。。。。。。。。。。。9 5.2.2.LDACS 的空对空扩展。。。。。。。。。。。9 5.2.3。飞行指导。。。。。。。。。。。。。。。。。。。10 5.2.4.航空公司的商务沟通。。。。。。。。。11 5.2.5。LDACS 导航。。。。。。。。。。。。。。。。。.11 6 .对 LDACS 的要求 .......................11 7 .LDACS的特点 ...................13 7.1 .LDACS子网 ...。。。。。。。。。。。。。。。。。13 7.2 。拓扑。。。。。.....................14 7.3 .LDACS 物理层 ...。。。。。。。。。。。。。。。14 7.4 。LDACS 数据链路层。。。。。。。。。。。。。。。。。。15 7.5 。LDACS 移动性。。。。。。。。。。。..........15 8 .可靠性和可用性 ............。。。。15 8.1 。第 2 层。。。。。。。。。。。。。。。。。。。。。。。。。15 8.2.超越第 2 层。。。。。。。。。。。。。。。。。。。。。18 9。协议栈。。。。。。。。。。。。。。。。。。。。。。。18 9.1.MAC 实体服务。。。。。。。。。。。。。。。。。。。19 9.2.DLS 实体服务。。。。。。。。。。。。。。。。。。。21 9.3.VI 服务。。。。。。。。。。。。。。。。。。。。。。。22 9.4.LME 服务。。。。。。。。。。。。。。。。。。。。。。22 9.5.SNP 服务。。。。。。。。。。。。。。。。。。。。。。22 10。。安全注意事项 ...................22 10.1.无线数字航空通信的原因 .......................22 10.2 .LDACS 要求 ...................23 10.3 .LDACS 的安全目标 ..............24 10.4 .LDACS 的安全功能 ............24 10.5 .产生的安全架构细节 ..。。。。。。24
航空和航空安全,从驾驶舱到管制员的界面,到驾驶舱到驾驶舱的协调,再到驾驶舱到客舱的互动,最后到安全管理和建立安全文化。这一事实在航空事故统计中得到了明确证实。根据 NASA 的一项调查,航空安全报告系统 (ASRS) 数据库确定了约80% 的事件或事故是由于飞行员与管制员或飞行员与其他机组人员之间的沟通不正确或不完整造成的。影响航空通信的主要因素是:不正确的沟通 - 80% 的报告,缺乏沟通 - 33% 的报告,正确但迟到的沟通 - 12% 的报告。同一项调查还揭示了哪种沟通方式受到影响:倾听 - 45%、说话 - 30% 和阅读或写作 25% [13]。J.B. Sexton、R.L. 也得出了类似的结论。Helmerich [8] 和 M. Krifka、S. Martens 和 S. Schwartz [7] 认为,过去二十年中,大约 70%-80% 的航空事故与人际沟通有关。他们还认为,航空技术领域的高水平能力并不足以阻止沟通不畅造成的灾难性后果。
将现有和未来的通信基础设施整合成一个系统,是未来通信基础设施 (FCI) 的愿景,旨在实现安全、可靠和功能强大的未来 ATM 通信目标。2003 年,国际民航组织表示需要通过渐进方式在航空通信中增加新功能。欧洲空中导航安全组织和美国联邦航空管理局 (FAA) 于 2007 年制定了 17 号行动计划,全面了解了总体需求。2007 年至 2009 年,欧盟研究项目 NEWSKY (NEtWorking the SKY) 启动了全球机载网络设计的首个可行性研究,并制定了基于互联网技术 (IPv6) 的新航空通信网络的初步规范,以满足这些需求。此外,欧盟研究项目 SANDRA(通过整合数据链路、无线电和天线实现无缝航空网络)旨在设计和实施综合航空通信系统,并通过空客 320 上的试验台和进一步的飞行试验对其进行验证。美国联邦航空管理局和欧盟委员会都支持该领域的深入研究,即 NextGen 和 SESAR 计划。当然,在未来的航空数据链路领域,即卫星、L 波段数字航空通信系统 (LDACS)、AeroMACS 方面,还需要付出更多努力,以促进无缝航空网络概念的发展。
为了防止由于消息过载而导致 ARINC 网络中出现过度排队(见附录 A),空中和地面端系统都包含了流量控制软件功能。流量控制使用滑动窗口协议,以防止超过五条消息在之前的环回消息中排队,而这些消息尚未被对等设备回显。如果发生过载,并且没有收到回显,则将推迟传输新消息,直到收到消息或消息的相应有效计时器到期。