有关其他 IFR 航班移动的信息将包括在有关飞机的同一高度或飞机将要经过的高度在相关飞机的航迹附近飞行的 IFR 航班的信息。当该地区没有已知的 IFR 航班时,将使用短语“无报告的 IFR 交通”。当已知或观察到的飞机与已识别飞机的路径相冲突时,雷达管制员可以(在非管制空域)警告飞行员注意已识别飞机。管制员用来协助已识别飞机观察其他飞机的方法通常包括 12 小时制时钟的相对方位、距离和视在运动,以及(如果有)未经验证的 C 模式高度读数。请务必记住,雷达协助并不能免除您避开其他飞机的责任。不要依赖雷达来帮助您避开其他飞机,因为雷达控制器只能提供雷达覆盖范围内的飞机的交通信息。交通信息的质量取决于飞机是否开启应答器并选择 ALT。
无人机具有提高操作灵活性和降低任务成本的良好能力,我们正在利用固定翼无人机实现的自动航母着陆性能改进。为了展示这种潜力,本文研究了两个关键指标,即基于 F/A-18 大攻角 (HARV) 模型的无人机飞行路径控制性能和降低进近速度。着陆控制架构由自动油门、稳定增强系统、下滑道和进近航迹控制器组成。使用蒙特卡洛模拟在一系列环境不确定性下测试控制模型的性能,包括由风切变、离散和连续阵风以及航母尾流组成的大气湍流。考虑了真实的甲板运动,其中使用了海军研究办公室 (ONR) 发布的海军环境系统表征 (SCONE) 计划下的标准甲板运动时间变化曲线。我们通过数字方式演示了允许成功着陆航母的限制进近条件以及影响其性能的因素。
周围区域的独特地形会引起严重的风效应,这通常会影响飞行最后阶段的机尾。当风向在 110° 到 250° 之间且风速超过 15 节时,在进近和飞行到岩石背风处的最后阶段可能会出现严重湍流。这种湍流会使着陆变得危险或无法着陆,因此机长在这种情况下进近时应极其小心。水面上经常可以看到湍流和阵风,图表 B3 表示了湍流效应。超过 25 节的西南风可能导致在接近 27 号跑道时形成水龙卷。飞越或靠近这些水龙卷已被证明是非常危险的,会导致飞机迅速失去控制,机翼严重下垂,以及姿态、高度和航迹的非指令改变。空中交通管制将会报告从塔台看到的水龙卷,但机长应注意,这种现象可能在没有任何警告的情况下迅速出现。
一般来说,异步航迹融合主要分为两类,一类是不同种类的传感器具有不同且固定的采样周期;另一类是传感器提供目标信息的时间间隔没有规律,即传感器没有固定的采样间隔。由于传感器自身的限制,第一类又可以根据不同采样周期的起始时间分为两部分。两种情况都可以先通过航迹预处理来同步传感器信息,然后再通过同步航迹融合算法进行跟踪。但预处理过程会导致误差增大,降低融合数据的可靠性。因此,研究人员提出了一系列异步航迹融合算法[1–10]。一些异步融合算法将数据配准的方法引入到融合算法中,实现融合前异步数据的同步,例如最小二乘法、插值法、外推法等。此外,一些算法根据接收时间对异步数据进行处理,并选择适当的融合方法进行异步数据融合,如基于最小误差协方差矩阵迹原则的融合算法[1,2]、基于信息矩阵的异步航迹融合算法[3-5]、分布式加权融合
摘要 — 本文提出了一套旨在捕捉飞机运行对环境影响的新绩效指标 (PI)。其贡献有三方面:计算最佳轨迹以将其与历史轨迹进行比较,并得出几个飞行效率 PI;提出了一系列基于燃料的 PI,其中燃料仅从不需要机密数据的监视轨迹数据集中估算;并提出了不同的 PI 和变体,旨在分离和识别不同的环境效率低下来源,区分那些可能归因于不同空中交通管理 (ATM) 层的,以及那些可归因于空域用户 (AU) 的。对两天的不同情况进行了案例研究,其中使用拟议的 PI 对 24 小时内穿越 FABEC 空域的所有交通的飞行效率进行了评估。主要结果表明,当以最大航程运行且无航路收费的完全免费航线作为最佳航迹的参考时,可归因于 ATM 的平均燃油效率约为 250 公斤(7.8%)。AU 引起的燃油效率(由于飞行速度超过最大航程速度)平均约为 100 公斤(3%)。还得出结论,垂直和水平轨迹域中的燃油效率对整体飞行效率的贡献相似。然而,战略层面的水平效率更高,而 n
然而,大约 20 秒后,湍流从中度增加到严重。在“导航模式”下以 0.78 马赫 (M0.78) 的速度选择开启的自动驾驶仪 (AP) 断开连接,飞机迅速爬升至指定高度以上。随后,强烈的冰雹开始影响飞机。两名机组人员都注意到,自动驾驶仪断开连接时主警告灯亮起,但由于冰雹的噪音,两名飞行员都没有听到相关的音频警告。FO 手动驾驶飞机,选择发动机点火开启,将速度设置为 M.076 以应对湍流,并打开驾驶舱顶灯。机长将导航显示器 (ND) 上的距离选择器改为 40 海里,以检查交通防撞系统 (TCAS) 上的冲突交通,监控主飞行显示器 (PFD) 上的飞机速度,监控副驾驶的侧杆输入并取消主警告灯。在整个过程中,PF 试图重新获得 FL340 并保持航迹。然而,飞机偏离了其指定巡航高度 1,300 英尺以上至 300 英尺以下,滚转至不超过 18° 的倾斜角。垂直速度指示器 (VSI) 上的指示证实,至少有一次爬升或下降率超过每分钟 5,900 英尺。
然而,大约 20 秒后,湍流从中度增加到严重。在“导航模式”下以 0.78 马赫 (M0.78) 的速度选择开启的自动驾驶仪 (AP) 断开连接,飞机迅速爬升至指定高度以上。随后,强烈的冰雹开始影响飞机。两名机组人员都注意到,自动驾驶仪断开连接时主警告灯亮起,但由于冰雹的噪音,两名飞行员都没有听到相关的音频警告。FO 手动驾驶飞机,选择发动机点火开启,将速度设置为 M.076 以应对湍流,并打开驾驶舱顶灯。机长将导航显示器 (ND) 上的距离选择器改为 40 海里,以检查交通防撞系统 (TCAS) 上的冲突交通,监控主飞行显示器 (PFD) 上的飞机速度,监控副驾驶的侧杆输入并取消主警告灯。在整个过程中,PF 试图重新获得 FL340 并保持航迹。然而,飞机偏离了其指定巡航高度 1,300 英尺以上至 300 英尺以下,滚转至不超过 18° 的倾斜角。垂直速度指示器 (VSI) 上的指示证实,至少有一次爬升或下降率超过每分钟 5,900 英尺。
垂直起降(VTOL)是无人机(UAV)的基本功能。VTOL一方面可以拓展和增强无人机的应用领域,但另一方面也使得无人机控制系统的设计更加复杂。控制系统设计中最具挑战性的需求是实现固定翼无人机对控制指令满意的响应敏锐度以及确保飞机模态通道有效解耦。本文在气动分析的基础上,建立了含有力和力矩的六自由度(6-DoF)模型,并通过计算流体力学(CFD)数值模拟进行气动分析。提出一种基于扩张状态观测器(ESO)的改进比例微分(PD)控制器来设计内环姿态控制,增强了无人机系统对内外部不确定性的抗干扰能力。建立无人机运动方程,将运动方程分解为纵向和横侧两个独立运动分量,设计小扰动条件下的外环控制律;提出一种纵向高度通道总能量控制系统(TECS),将速度控制与航迹控制分离;横侧轨迹跟踪采用L1非线性路径跟踪制导算法,提高曲线跟踪能力和抗风能力。实飞实验数据证明了该方法的有效性。最后,设计了一种控制律。
关键词:数码相机、测绘工作流程、数据管理、系统配置、能力建设 摘要:谷歌(谷歌地球)、微软(虚拟地球)等公司掀起了航空和卫星图像的互联网热潮,为摄影测量、遥感和 GIS 市场带来了巨大的曝光度。只有卫星图像才能在最短的时间内完全覆盖地球。然而,城市和发展中地区对更多、更普遍细节的日益增长的需求可以通过非常高分辨率的航空图像来实现。这些互联网提供商使地理参考图像的概念变得非常流行,并通过为不同应用程序开放对这些数据的访问,扩展了传统的地理空间市场,从而创建了现在众所周知的地理空间网络门户。其中许多,出于成本原因,经常使用存档图像或二手图像。受业务和工程应用需求的驱动,专业用户需要高度准确和最新的地理空间信息。因此,互联网地球数据提供商也在间接推动传统市场的发展。这些不断增长的市场导致图像数据采集系统和扩展的地理参考应用的快速发展。本文讨论了从在许多不同地理区域工作的服务企业的角度捕获高分辨率航空图像的过程。经过验证的技术与高度自动化的工作流程相结合,显示出从规划、准备、执行到地理空间测绘项目归档的所有已知业务方面的流程链优化潜力。我们特别强调可用图像传感器技术及其集成的经济使用。现代飞行任务规划有助于减少飞行执行时间,同时优化沿航迹和跨航迹重叠的需求。3D 建模是这一进步的关键要素之一,我们在一定程度上讨论了这一方面。不同数字大画幅相机系统的属性会影响飞行任务的规划和执行,因此需要对传统的方形针孔相机模型进行调整。新的数码相机和扫描仪设计对块几何形状和准确性的影响程度是另一个需要考虑的方面。众所周知的胶片冲洗被地面处理(也称为后处理)取代。当这项技术在一家国际运营的测绘公司实施时,数字传感器的性质值得特别考虑。通常,国际运营需要处理额外的物流方面,其中一些将在本文中介绍。客户所需的地面分辨率产品最终将推动许多决策,它将影响规划阶段,甚至在那之前,例如与客户的咨询阶段,客户通常似乎不确定他的特定应用实际上需要什么。最终,地理空间数据的归档和检索也是一个需要考虑的重要方面。为了项目执行的安全,应将临时归档步骤集成到工作流程中。由此产生的存储需求以及在企业环境中将大量图像数据从一个部门传输到另一个部门的能力迅速对内部基础设施提出了重大的技术和经济要求。
关键词:数码相机、测绘工作流程、数据管理、系统配置、能力建设 摘要:谷歌(谷歌地球)、微软(虚拟地球)等公司掀起了航空和卫星图像的互联网热潮,为摄影测量、遥感和 GIS 市场带来了巨大的曝光度。只有卫星图像才能在最短的时间内完全覆盖地球。然而,城市和发展中地区对更多、更普遍细节的日益增长的需求可以通过非常高分辨率的航空图像来实现。这些互联网提供商使地理参考图像的概念变得非常流行,并通过为不同应用程序开放对这些数据的访问,扩展了传统的地理空间市场,从而创建了现在众所周知的地理空间网络门户。其中许多,出于成本原因,经常使用存档图像或二手图像。受业务和工程应用需求的驱动,专业用户需要高度准确和最新的地理空间信息。因此,互联网地球数据提供商也在间接推动传统市场的发展。这些不断增长的市场导致图像数据采集系统和扩展的地理参考应用的快速发展。本文讨论了从在许多不同地理区域工作的服务企业的角度捕获高分辨率航空图像的过程。经过验证的技术与高度自动化的工作流程相结合,显示出从规划、准备、执行到地理空间测绘项目归档的所有已知业务方面的流程链优化潜力。我们特别强调可用图像传感器技术及其集成的经济使用。现代飞行任务规划有助于减少飞行执行时间,同时优化沿航迹和跨航迹重叠的需求。3D 建模是这一进步的关键要素之一,我们在一定程度上讨论了这一方面。不同数字大画幅相机系统的属性会影响飞行任务的规划和执行,因此需要对传统的方形针孔相机模型进行调整。新的数码相机和扫描仪设计对块几何形状和准确性的影响程度是另一个需要考虑的方面。众所周知的胶片冲洗被地面处理(也称为后处理)取代。当这项技术在一家国际运营的测绘公司实施时,数字传感器的性质值得特别考虑。通常,国际运营需要处理额外的物流方面,其中一些将在本文中介绍。客户所需的地面分辨率产品最终将推动许多决策,它将影响规划阶段,甚至在那之前,例如与客户的咨询阶段,客户通常似乎不确定他的特定应用实际上需要什么。最终,地理空间数据的归档和检索也是一个需要考虑的重要方面。为了项目执行的安全,应将临时归档步骤集成到工作流程中。由此产生的存储需求以及在企业环境中将大量图像数据从一个部门传输到另一个部门的能力迅速对内部基础设施提出了重大的技术和经济要求。