1. 引言/ Uvod 随着空海一体战办公室(ASBO)提出“空海一体战”(ASB)[1-2]和“全球公域介入与机动联合概念(JAM-GC)”[3-4]两个新战略概念,为应对反介入/区域拒止(A2/AD)的潜在威胁(图1),美国海军尤为强调跨域纵深打击目标的能力,在实施跨域作战时覆盖整个天-空-海-陆-网空间,可为联合部队提供最大的作战优势(图2)。美国海军上述作战需求给海军舰艇设计研究带来了许多新的挑战。为保持前沿存在、前沿部署和前沿作战,美国海军按照武器系统发展原则,满足新作战任务对系统完整性的要求。美国海军海上系统司令部(NAVSEA)发布报告称,“随着国家安全环境越来越复杂、挑战性越来越大,未来一体化舰船设计规划已成为必然”。因此,美国海军将继续发展以“模型驱动、学科集成、系统集成”为特征的新型舰船概念,提升海军舰船系统发展水平,获得整体作战效能。
摘要:本文从德国不来梅的 Lürssen 造船厂的角度,对当前和未来海军建造计划的技术趋势进行了深入分析。许多西欧和海外海军认识到不断变化的作战要求,重点关注水面作战舰艇,例如具有先进能力的轻型护卫舰大小的舰艇,以满足近海作战行动的特定需求。根据这些新要求,本文概述了轻型护卫舰和护卫舰大小舰艇的当前和未来设计技术。其中包括不同类型的平台及其在近海作战中预期使用的特定优势和能力。此外,还广泛讨论了减少舰艇特征以提高生存能力的措施。关于在近海环境中具有足够的适航性、机动性、速度和续航能力(特性),本文还扩展了新推进系统的开发和特性,强调了所有系统组件总体上需要高度自动化。关于现代作战系统技术的讨论再次强调了需要采用具有开放系统架构的模块化和灵活系统设计。另一个主题是尽可能高水平的系统自动化,以减少 CIC 中的人员数量并确保在威胁情况下立即做出反应。在此背景下,所有传感器和武器的完全集成以及经过验证的操作软件是必不可少的技术要求。最后,本文评论了当前建造理念的一些经济方面,从而涉及减少船员、降低成本、中期改装的潜在能力和增长潜力的可能性。
摘要:本文从位于德国不来梅的德国海军舰艇造船厂 Lürssen 的角度,对当前和未来海军建造计划的技术趋势进行了深入分析。许多西欧和海外海军认识到,作战要求的变化侧重于水面战舰,例如具有先进能力的轻型护卫舰大小的舰艇,以满足近海作战的特定需求。根据这些新要求,本文概述了轻型护卫舰和护卫舰大小舰艇的当前和未来设计技术。其中包括不同类型的平台及其在近海作战中预期使用的特定优势和能力。此外,还广泛讨论了减少舰艇特征以提高生存力的措施。关于在近海环境中获得足够的适航性、机动性、速度和续航能力(特性),本文还扩展了新型推进系统的发展和特性,强调了所有系统组件总体上需要高度自动化。关于现代作战系统技术的讨论再次强调了需要采用具有开放式系统架构的模块化、灵活的系统设计。另一个主题是尽可能高水平的系统自动化,以减少 CIC 中的人员数量并确保在威胁情况下立即作出反应。所有传感器和武器的全面集成以及成熟的操作软件是此背景下的基本技术要求。最后,本文对当前建造理念的一些经济方面进行了评论,其中涉及减少船员、降低成本、中期改装的潜在能力和增长潜力的可能性。
服役后,莫比尔湾号加入美国大西洋舰队,于 1987 年 3 月抵达母港佛罗里达州梅波特。经过一年的船员资格审查、测试和系统试验后,莫比尔湾号于 1989 年 5 月 11 日开始首次部署。在这次巡航中,莫比尔湾号因在阿曼湾的行动获得了她的前两个奖项:海上服务部署勋带和武装部队远征勋章。她于 1990 年 8 月部署,支持沙漠盾牌行动和沙漠风暴行动,成为第一艘环球航行的宙斯盾巡洋舰。在波斯湾,该舰成为第一位指挥四艘航母特遣舰队的战斗部队防空作战指挥官,从而脱颖而出。莫比尔湾号发射了 22 枚战斧对陆攻击巡航导弹,并担任战斗部队反水面作战指挥官,瞄准伊拉克海军舰艇,指挥舰载攻击机摧毁 38 艘伊拉克海军舰艇,彻底击溃伊拉克海军。直升机反潜中队轻型 43 (HSL-43) 支队 2B 配备了两架 SH- 60B 海鹰直升机。1991 年 5 月,莫比尔湾号奉命前往菲律宾共和国苏比克湾参加“炽热守夜”行动,撤离因皮纳图博火山爆发而流离失所的数千名民众。1991 年 12 月,莫比尔湾号开始为 1992 年春季波斯湾部署做准备。1992 年 4 月 15 日,莫比尔湾号再次启航前往波斯湾。途中,该舰和船员访问了澳大利亚悉尼,代表美国海军参加珊瑚海战役 50 周年庆典。1992 年 5 月下旬,该舰驶过霍尔木兹海峡,开始执行以下任务:
1986 年 10 月 14 日至 11 月,芝加哥号在巴哈马群岛附近的埃克苏马海峡靶场进行声学试验。1986 年 11 月 17 日至 12 月 20 日,芝加哥号在波多黎各作战区进行武器系统验收试验,在关塔那摩湾作战区参加反潜战演习。11 月 18 日至 22 日、27 日至 31 日,芝加哥号在南加州作战区进行反潜战 (ASW) 作战。1990 年 1 月 5 日至 2 月 28 日,芝加哥号在夏威夷作战区进行未来指挥官 (PCO) 作战。1990 年 6 月 22 日,在英属哥伦比亚附近的纳诺斯试验场进行测试后,芝加哥号抵达埃斯奎莫尔特海军基地,对加拿大维多利亚进行为期两天的访问。1990 年 11 月 13 日,芝加哥号抵达日本横须贺进行为期五天的保养。 1991 年 2 月 3 日进入红海,支援沙漠风暴行动。1992 年 5 月 6 日,芝加哥号抵达澳大利亚布里斯班,进行为期四天的港口访问,以纪念珊瑚海战役 50 周年。1992 年 11 月 16 日,芝加哥号离开母港,参加南加州海岸的 COMTUEX 93-2T。1995 年 2 月 14 日,芝加哥号离开母港,与亚伯拉罕·林肯号 (CVN 72) BG 一起参加南加州海岸的 FLEETEX。1995 年 3 月 6 日至 21 日,芝加哥号在阿拉斯加凯奇坎附近的贝姆运河的东南阿拉斯加声学测量设施 (SEAFAC) 进行声学试验。
海军舰艇的维护计划需要不断改进,以在可用性约束内管理不断上升的维护成本。现有的维护计划方法并非最佳,因为维护成本在舰艇可用性没有改善的情况下不断上升。本文回顾了应用于舰艇和海军舰艇的基于风险的维护计划 (RBM) 框架,并对所使用的风险评估和维护计划技术进行了批判性分析。此外,还定义了舰艇和海军舰艇未来应用的目标和考虑因素,并评估了该框架作为现有预防性维护 (PM) 和可靠性中心维护 (RCM) 方法的改进。建议将由状态监测数据支持的概率方法与决策理论相结合,用于构成 RBM 计划框架的风险评估和维护计划元素。介绍了从定期 PM 和 RCM 两个方面实施该框架。建议从组件级别向上开发应用程序。建议将可用性和总体维护成本作为现有方法的评估指标。在拟议的框架内正式化应用程序的开发。在 RBM 调度框架内开发应用程序有望降低维护成本,同时满足船舶和海军舰艇应用的可用性要求。
078–1.1 简介 1–1 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。078–1.2 定义 1–1 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。078–1.2.1 垫片、填料和密封件 1–1 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。078–1.2.1.1 垫圈 1–1 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。078–1.2.1.2 包装 1–1 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。078–1.2.1.3 密封装置(密封) 1–1 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。078–1.2.2 一般术语 1–1 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。078–1.2.2.1 硬度计硬度 1–1 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。078–1.2.2.2 挤压 1–1 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。078–1.2.2.3 动态密封 1–1 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。078–1.2.2.4 静密封 1–1 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。078–1.2.3 密封装置的类型 1–2 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。078–1.2.3.1 O 形圈 1–2 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。078–1.2.3.2 活塞环 1–2 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。078–1.2.3.3 刮刀环 1–2 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。078–1.2.3.4 T 形环 1–2 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。078–1.2.3.5 U 型圈 1–2 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。078–1.2.3.6 V 形环 1–2 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。078–1.2.3.7 刮水环 1–2 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。078–1.2.3.8 杯密封 1–2 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。078–1.2.3.9 隔膜密封(平隔膜)1–2 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。078–1.2.3.10 碟形隔膜密封 1–2 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。078–1.2.3.11 法兰(帽式)密封 1–2 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。078–1.2.3.12 唇形密封 1–2 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。078–1.2.3.13 机械密封 1–2 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。078–1.2.3.14 油封 1–2 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。078–1.2.3.15 O 形圈密封 1–2 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。078–1.2.3.16 活塞密封 1–2 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。078–1.2.3.17 压力驱动密封 1–2 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。078–1.2.3.18 径向密封 1–2 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。078–1.2.3.19 杆密封件(轴或阀杆)1–2 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。078–1.2.3.20 滑动密封 1–2 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。078–1.2.3.21 静密封(垫圈)1–2 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。078–1.2.3.22 防尘密封件 1–3 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。078–1.2.4 辅助设备 1–3 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。078–1.2.4.1 适配器(支撑环)1–3 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。078–1.2.4.2 母适配器 1–3 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。078–1.2.4.3 公接头 1–3 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。078–1.2.4.4 备用(防挤压)环 1–3 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。078–1.2.4.5 填充环 1–3 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。078–1.2.4.6 腺体 1–3。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。078–1.2.4.7 压盖从动件 1–3 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。078–1.2.4.8 灯笼环(密封笼)1–3 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
采用真空辅助树脂注射制造。最终的表面厚度约为 3 毫米。芯材为 50 毫米厚的交联 PVC 泡沫,属于相对较重的 Divinycell H200 型,密度约为 200 千克/立方米。所有接头均采用 Norpol FI 177-10 填料。对于 X1 型样品,圆角半径为 25 毫米,覆盖层采用与表面层压板中的铺层相对应的 E 玻璃纤维垫制成。覆层垫的长度为 150 毫米,每层相互错开 16 毫米,如图所示。2.除了填料和覆层之外,X2 型样品还具有嵌入填料中的专门设计的 Divinycell H250 泡沫插入物,从而将圆角半径增加到 60 毫米并减轻了重量。用于覆层的纤维垫(与 X1 型相同)长度不同,
– 海军研究生院 (NPS) 的海军研究计划 (NRP) 支持该项研究 – 海军研究办公室 (ONR) 的海军企业合作伙伴与大学合作促进国家卓越 (NEPTUNE 2.0) 计划 • 免责声明:本文所表达的观点均为作者观点,并不一定代表美国政府、国防部 (DoD) 或其组成部分的观点。
8 海军 2020 财年 30 年(2020 财年 - 2049 财年)造船计划中预计的航母部队规模反映了海军现已撤回的 2020 财年预算提案,该提案不为航空母舰 CVN-75(Harry S. Truman)的 RCOH 提供资金,而是在 2024 财年左右退役。随着这项预算提案的撤回,2022 财年至 2047 财年期间预计的航母部队规模比海军 2020 财年预算提案中显示的规模高出一艘。新调整的军力水平预测反映了撤回在 2024 财年左右退役 CVN- 75 的提议,具体如下:预计军力在 2020-2021 财年将包括 11 艘舰艇,在 2022-2024 财年将包括 12 艘舰艇,在 2025-2026 财年将包括 11 艘舰艇,在 2027 财年将包括 10 艘舰艇,在 2028-2039 财年将包括 11 艘舰艇,在 2040 财年将包括 10 艘舰艇,在 2041 财年将包括 11 艘舰艇,在 2042-2044 财年将包括 10 艘舰艇,在 2045 财年将包括 11 艘舰艇,在 2046-2047 财年将包括 10 艘舰艇,在 2048 财年将包括 9 艘舰艇,在 2049 财年将包括 10 艘舰艇。