MiG-21-93 战斗机现代化计划。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.15 MiG-31E 拦截战斗机。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.16 MiG-29 轻型战术战斗机。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.17 MiG-29SE 轻型战术战斗机。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.18 MiG-29SMT 轻型多用途战斗机。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.19 MiG-29K 舰载多用途战斗机。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.20 MiG-29KUB 舰载战斗教练机。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.20 MiG-29M/M2 多用途战斗机。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.21 Su-27SKM 多用途战斗机。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.22 Su-30MK 多用途战斗机。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.23 Su-30MK2 多用途战斗机。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.24 Su-35 多用途战斗机。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.25 Su-33 舰载战斗机。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.26
背景 ................................................................................................................ 4 舰载组件 ................................................................................................................ 4 概述 .............................................................................................................................. 4 性能 .............................................................................................................................. 5 概述 .............................................................................................................................. 5 方位角 ...................................................................................................................... 7 仰角 ...................................................................................................................... 7 附加舰载系统 ...................................................................................................... 9 概述 ...................................................................................................................... 9 战术空中导航 (TACAN) ................................................................................ 9 垂直/短距起飞和着陆光学着陆系统 ............................................................................................................. 12 机载系统 ............................................................................................................. 14 测试飞机 ............................................................................................................. 14 ICLS 接收器-解码器 ............................................................................................. 14 雷达高度计 ................................................................................................ 15 战术空中导航(TACAN) .............................................................................. 15
MK 92 J 火控系统 (FCS) 提供独立的、快速反应的监视、捕获、跟踪和指示空中和地面目标,并控制舰载火炮和导弹系统。该系统有多种配置,可满足各种级别船舶的火控要求。每种配置都能够独立(单机)运行。Mod 1 配置用于美国海岸警卫队中型巡逻艇和美国海军水翼巡逻舰上的火炮控制。Mod 2 与舰载作战系统集成,为美国和澳大利亚皇家海军的导弹护卫舰提供火炮和导弹火力控制。Mod 5 与 Mod 1 配置类似,用于沙特阿拉伯皇家海军的两级舰艇。
对于陆基作业,将使用局部差分全球定位系统 (LDGPS) 技术,而对于航空母舰着陆,将采用舰载相对 GPS (SRGPS) 技术。
本文介绍了一种用于无人机 (UAV) 舰载着陆的 L 1 自适应控制器,该控制器增强了动态逆控制器。三轴和功率补偿器 NDI (非线性动态逆) 控制器作为此架构的基线控制器。内环命令输入是滚转速率、俯仰速率、偏航速率和推力命令。外环命令输入来自制导律,用于校正下滑道。然而,不完善的模型逆和不准确的气动数据可能会导致性能下降,并可能导致舰载着陆失败。L 1 自适应控制器被设计为增强控制器,以解决匹配和不匹配的系统不确定性。通过蒙特卡罗模拟检查了控制器的性能,显示了基于非线性动态逆开发的 L 1 自适应控制方案的有效性。
(TEMP) 1610 和路由修订版 D。此 TEMP 修订版延续了前几份年度报告中描述的两个连续的初始操作测试阶段。第一阶段侧重于常规单位级操作和舰船内部工作(包括舰载航空联队的周期性飞行操作)。第二阶段侧重于更复杂的演进,包括在自卫场景中测试综合作战系统,以及在综合训练单元演习 (COMPTUEX) 海上期间与舰载航空联队、驱逐舰中队和航母打击群参谋人员的综合操作。海军将在 COMPTUEX 中检查持续 SGR,并在舰船第二次部署之前检查激增 SGR。TEMP 修订版 D 还概述了海军针对 CVN 78 的网络安全战略。
肖格尔上尉出生于华盛顿州伦顿,1998 年毕业于华盛顿大学,获得工业工程理学学士学位。1998 年,她在西雅图华盛顿大学海军预备役军官训练团加入美国海军。她在佛罗里达州彭萨科拉参加飞行训练,并于 2000 年被任命为弗吉尼亚州诺福克舰载机载预警中队 (VAW) 120 的海军飞行军官 (NFO)。她的第一项任务是在加利福尼亚州穆古角的舰载机载预警中队 (VAW) 117 Wallbangers,在那里她被部署在卡尔文森号航空母舰 (CVN 70) 上,以支持持久自由行动,担任中尉和助理航空师军官。此外,肖格还被部署在尼米兹号航空母舰(CVN 68)上,担任电子战官、战术官、NFO 训练官和质量保证官,支持伊拉克自由行动。
防空系统部已经开发出一种低成本平面天线 (LCPA) 概念,与目前的 CEC 阵列天线相比,该概念可大幅降低采购和生命周期成本。新的设计概念还提供了增强的舰载集成灵活性,并解决了与现有 CEC 天线相关的 DDG 51 安装挑战。该概念是一种四面平面阵列系统,采用低成本的商业阵列技术。已经设计、制造和测试了几个发射和接收模块以及一个小阵列部分,以证明 LCPA 概念的有效性。该概念已转交给 CEC 设计代理雷神公司,该公司目前正在开发 LCPA 设计,计划于 2003 年生产第一批产品,以支持 DDG 51 Flight II/IIa 安装,随后成为基线 CEC 舰载天线。
防空系统部已经开发出一种低成本平面天线 (LCPA) 概念,与目前的 CEC 阵列天线相比,该概念可大幅降低采购和生命周期成本。新的设计概念还提供了增强的舰载集成灵活性,并解决了与现有 CEC 天线相关的 DDG 51 安装挑战。该概念是一种四面平面阵列系统,采用低成本的商业阵列技术。已经设计、制造和测试了几个发射和接收模块以及一个小阵列部分,以证明 LCPA 概念的有效性。该概念已转交给 CEC 设计代理雷神公司,该公司目前正在开发 LCPA 设计,计划于 2003 年生产第一批产品,以支持 DDG 51 Flight II/IIa 安装,随后成为基线 CEC 舰载天线。
苏霍伊机械制造厂于 1978 年开始准备 Su-27K 舰载战斗机的初步设计。该设计基于 Su-27 战斗机,当时该战斗机仍处于初始原型配置(T-10),并在前一年进行了飞行试验。Su-27K 舰载战斗机配备两台 AL-31F 发动机,推力为 12,500 千克力,正常起飞重量(不带武器)要求为 22,800 千克,最大起飞重量(带空对空导弹)要求为 26,600 千克。该飞机的最大战斗挂载包括两枚 R-73 短程导弹、六枚 R-27E 中程导弹以及 150 发内置机炮弹药。满载燃油7680千克的苏-27K作战半径可达1200公里,在距航母250公里的距离上巡航续航时间至少可达2小时。与陆基原型机相比,苏-27K配备了折叠机翼、加强型底盘、拦阻钩以及特殊导航设备。在建造过程中,设计了一系列措施,以增加底盘、动力装置和设备的防腐蚀保护。