2019 年 3 月 1 日,OMI 开始回收饱和吸附剂,并用新吸附剂替换,以吸收从船舶发动机舱排出的柴油和液压油。20 在 OMI 人员于下午 5:30 左右离开之前,船只周围拉紧了围油栏。21 2020 年 3 月 2 日,OMI 人员返回事故现场,发现船只已恢复正常,发动机舱内导致排放的泄漏已堵住。RP 的现场助理通知 OMI,他们的服务不再需要。22 2019 年 3 月 2 日,NPFC 联系了 FOSC 的现场人员,以确定 OMI 的响应行动。FOSCR 确认,OMI 在现场等待上午到达的 USCG 人员批准释放他们的服务和工作。23
责任/职责:值班并以小组形式工作,必须规划和安排对所有机舱机械和辅助设备进行大修和操作维修,例如带发电机的发动机、电动机、空气压缩机、空调系统、制水装置、污水系统、燃油系统、电气系统、照明设备、绞车和液压起重机。通过视觉和听觉定期检查所有机械,以确定运行状况和维护和维修需求,并进行调整以消除设备重大故障。检查和控制燃料、油、水等的数量,以确保疏浚机械正常运行。完成维修,例如更换轴承、修理燃油管路、研磨阀门、更换辅助泵和机械中的气缸、活塞和剪刀、拆卸和更换完整组件。协助在停工期间进行大修和大修。协助在机舱内喷漆和其他内务工作。
B-2A 是 GBU-38 的入门平台,即它是美国武装部队中第一架配备这种新武器的飞机。因此,由于 B-2A 能够携带大量 500 磅级弹药,武器的设计和集成有了新的突破。B-2 在两个并排的武器舱中携带 80 枚 GBU-38 弹药,每个武器舱有 40 枚武器。每个武器舱内都有前后弹架,每个弹架有 20 枚弹药。与所有武器系统一样,从 HF 的角度来看,添加新东西的挑战是将新设计集成到现有显示器中,并符合特定设计的软件接口控制文档 (ICD)。本论文主要关注三个领域。1) 人机界面和及时控制大量制导武器; 2) 在有限的空间内显示大量信息(这一直是航空和驾驶舱设计的挑战); 3) 从 HF 角度考虑任务使用。
斯坦利·多尔蒂中校断言,美国空军的任何飞机都无法在没有空中加油的情况下进行快速的全球力量投射;简而言之,加油机是全球影响力的基石——全球力量。1 空中加油的早期概念包括大胆、野蛮的英勇壮举。根据战略空军司令部总部历史学家办公室的说法,空中加油的历史始于 1918 年,当时美国海军预备役飞行员戈弗雷·L·卡伯特中尉开始收集放在浮筒上的汽油罐。2 这项工作旨在测试将燃料放在船上的可行性,以便飞机可以在跨大西洋飞行期间进入并加油。1921 年 10 月 2 日,在华盛顿特区进行了一次基本的飞行加油,当时一名海军中尉在一架 Huff-Daland HD-4 飞机的后座驾驶舱内用抓钩抓起一桶五加仑的汽油
概述 • 智能视频制导传感器 (SVGS) 专为资源受限系统(例如立方体卫星、小型卫星、小型着陆器)而设计,是高级视频制导传感器的一种低质量、低成本 COTS 实现,专为会合近距操作和捕获 (RPOC);进入、下降和着陆 (EDL)、舱内导航和 GPS 拒绝导航而设计。 • 使用摄像头捕获图像并使用摄影测量技术分析目标航天器上发光标记的模式,以确定范围和相对方向(6DOF 状态)。 • 可用于业余级(例如 Raspberry Pi、Android)和高端平台(例如 Xilinx US+MPSoC)。 • 在 Linux、FreeRTOS 和 Android 中的软件实现。 • 传感器范围可根据目标配置定制。 • 预计 SVGS 飞行装置的 SWaP: – 尺寸:8.5x6.5x4.5cm – 重量:250g – 功率:5W 摄像头 + 5W 目标
2009 年 2 月 25 日上午,TK1951,一架波音 737-800 被引导至航向道,在 AMS 2000 英尺处以 ILS 方式进近 18R 跑道,距离跑道入口不到 5.5 海里(海里)。这促使机组人员使用垂直速度模式从上方捕捉下滑道(这是必要的,因为在保持在 2000 英尺时需要近距离导航)。当时空中交通管制员的工作量不断增加,进近航段将在 TK1951 之后不久分割。副驾驶(F/O)是一名新聘用的 42 岁飞行员(拥有 4000 小时空军飞行经验),正在接受航线训练,担任飞行员飞行(PF)。已选择开启正确的自动驾驶仪(称为自动驾驶仪 B 或 CMD B),并且正确的飞行控制计算机(称为 FCC B)正在为其提供所有输入。当机组人员选择垂直速度模式并离开 2000 英尺时,737 的自动油门 (A/T) 减速至怠速,这与机组人员的期望(以及他们所知道的)他们对自动化的指令一致。接近新的襟翼设置时,飞机必须同时减速并下降,此时需要怠速功率。在接下来的 70 秒内,自动化系统的表现与机组人员的预期完全一致。然而,自动油门却以一种在这种情况下不正常的模式(所谓的减速闪光模式)自动且隐蔽地减速,但这是由于离开 2000 英尺后左侧雷达高度计 (RA) 和其他飞行参数的错误雷达高度读数触发的。驾驶舱内没有自动油门指示来唯一标记减速闪光模式。RA 异常没有报告给机组人员,驾驶舱内也没有故障标志、警告、灯光或任何其他直接通告。本质上,由于错误的雷达高度计输入,自动油门决定是时候降落了。它不再跟踪选定的速度,也不提供所谓的飞行包线保护。然而,自动驾驶仪仍然
清洁人员正在日本航空 (JAL) 波音 787-8 飞机 JA829J 的后舱内工作,该飞机停在马萨诸塞州波士顿爱德华·劳伦斯·洛根将军国际机场 (BOS) 的登机口。大约在同一时间,驾驶舱内的一名维护经理发现辅助动力装置 (APU)(当时飞机的唯一动力来源)已自动关闭。不久之后,一名机械师打开了后电子设备 (E/E) 舱,发现 APU 电池盒前部冒出浓烟和火焰。2 当时飞机上没有乘客或机组人员,飞机上的维护或清洁人员均未受伤。飞机救援和消防人员赶赴现场,一名消防员受轻伤。这架飞机作为定期客运航班从日本成田机场抵达,编号为 JAL 008 航班,根据《联邦法规》第 14 条第 129 部分的规定执行。
B-2A 是 GBU-38 的门槛平台,也就是说,它是美国武装部队中第一架配备这种新武器的飞机。因此,由于 B-2A 能够携带大量 500 磅级弹药,武器的设计和集成有了新的突破。B-2 在两个并排的武器舱中携带 80 枚 GBU-38 弹药,每个武器舱有 40 枚武器。每个武器舱内都有前后弹药架,各有 20 枚弹药。与所有武器系统一样,从 HF 的角度来看,添加新功能的挑战在于将新设计集成到现有显示器中,并符合特定设计的软件接口控制文档 (ICD)。本论文主要关注三个领域。1) 人机界面和及时控制大量制导武器;2) 在有限的空间内显示大量信息(这一直是航空和驾驶舱设计的挑战); 3)从HF角度考虑任务就业问题。
当前设施能力:如今,在国际空间站上,科学家有能力在轨道内和舱外执行广泛的科学研究。对于加压环境之外的有效载荷,我们拥有无线和有线数据连接、加热和冷却功能以及远程控制电源连接。一些有效载荷具有手动控制机制,可在发生异常时由机器人操作。对于在国际空间站加压空间内运行的有效载荷,POIC 拥有多个标准化有效载荷机架,提供一套资源,即 ExPRESS 机架和基本 ExPRESS 机架 (BER)、两个用于需要封闭清洁环境的实验的手套箱,以及部署的有效载荷在舱内其他地方运行以进行自适应操作的能力。ExPRESS 机架可以提供电力、数据、冷却、烟雾探测、氮气、真空和指挥能力,同时保持有效载荷开发人员可以构建的标准尺寸。BER 更简单,不提供真空或氮气,但允许比标准 ExPRESS 机架中的有效载荷更大的有效载荷。
双人直升机副驾驶的拦截器。此外,还可以编程一种新型的拦截器脱钩,以便在拦截器受阻或飞行员之间发生力争时优先考虑一名飞行员控制站。通过实时测量力,如果两名飞行员在相反方向上施加的力超过指定的力阈值,则拦截器会自动脱钩。本文旨在研究在可控性方面仍然可以接受的自动拦截器脱钩的最大力阈值。为此,四名试飞员参加了双人直升机座舱内配备主动拦截器的地面模拟器的实验测试。通过低空飞行中的接管控制任务开发和验证了安全严重性范围。发现自动拦截器脱钩的最大力阈值在俯仰轴上为 30 N,即控制振动的最大力阈值至少与 2 级操纵品质相关。此外,实施了主动力衰减逻辑,并证明可有效减少自动拦截器脱钩期间的控制活动和直升机姿态变化。