A-4 – 飞机仪表 A-4 大气数据工作组 AS8036 更新工作组 A-4 ED 电子显示器 A-4 EFIS 工作组 AS407 工作组 A-4 FLW 燃油流量计 A-4 HUD平视显示器 A-4 ULD 水下定位装置 A-5 航空起落架系统 A-5A 机轮、刹车和防滑控制装置 A-5B 齿轮、支柱和联轴器 A-5C 飞机轮胎 A-10 飞机氧气设备 A-20 飞机照明指导小组 A-20A 机组站照明 A-20B 外部照明 A-20C 内部照明 A-21 飞机噪音测量和噪音航空排放模型 A-22 防火和可燃性测试 AC-9 飞机环境系统 AC-9C 飞机结冰技术 AC-9M 客舱空气测量 S-7 驾驶舱和运输飞机操纵质量标准 S-9 客舱安全规定 S-9A 安全设备和救生系统 S-9B 客舱内饰和家具 飞机座椅 ACBG 机身控制轴承指导小组 ACBGPB 滑动轴承 ACBGREB 滚动元件
A-4 – 飞机仪表 A-4 大气数据工作组 AS8036 更新工作组 A-4 ED 电子显示器 A-4 EFIS 工作组 AS407 工作组 A-4 FLW 燃油流量计 A-4 HUD 平视显示器 A-4 ULD 水下定位装置 A-5 航空起落架系统 A-5A 机轮、刹车和防滑控制装置 A-5B 齿轮、支柱和联轴器 A-5C 飞机轮胎 A-10 飞机氧气设备 A-20 飞机照明指导小组 A-20A 机组站照明 A-20B 外部照明 A-20C 内部照明 A-21 飞机噪音测量和噪音航空排放建模 A-22 防火和可燃性测试 AC-9 飞机环境系统 AC-9C 飞机结冰技术 AC-9M 客舱空气测量 S-7 运输飞机驾驶舱和操控质量标准S-9 客舱安全设施 S-9A 安全设备和救生系统 S-9B 客舱内饰和家具 飞机座椅 ACBG 机身控制轴承 转向组 ACBGPB 滑动轴承 ACBGREB 滚动元件
考虑到现代客机最初并非为客舱货物运输而设计,且客舱环境与客机腹舱或货机主货舱不同,即缺乏烟雾/火灾探测系统或自动灭火系统,相关的运行风险仍需研究。因此,航空承运人应对此类操作进行全面的风险评估并采取相关缓解措施,持续监测和记录任何新出现的危险并立即采取纠正措施。一般而言,承运人在客舱运输货物前应满足以下一般要求:1)承运人应熟悉货物运输操作;2)承运人应根据本 OSB 进行充分的安全风险评估;3)不允许通过改变客舱配置(即拆除全部或部分乘客座椅)在客舱地板上运输货物;4)不允许在客舱内同时运输乘客和货物;5)应严格遵循飞机制造商提供的技术支持解决方案。应考虑客舱装载货物对飞机重量和重心的影响,并在所有操作阶段遵守飞机飞行手册(AFM)和重量平衡手册(WBM)中规定的限制。
当飞机飞过 10,100 英尺,到达 GHOREPANI 前 5 英里处时,机长表示云层仍然存在,因此建议副驾驶继续爬升至 12,000 英尺,并告知他们将冒险飞到 TATOPANI,然后再决定是继续飞行还是改道。02:14:50,当飞机飞过 GHOREPANI 区域 11,500 英尺时,EGPWS 地形警报和 02:14:52 PULL UP 警告出现,但飞机无法看到他们,02:15:01 表示飞机可以看到他们,警告于 02:14:53 停止。02:15:27,机长指示副驾驶保持航向 330 和略低于云层的飞行高度,之后开始小幅下降。这时机长询问副驾驶,他的一侧是否能看见,副驾驶回答说能看见一点。机长随后指示副驾驶下降至 10,000 英尺。当飞机于 02:15:55 开始下降,经过 11,000 英尺后,机舱内响起了超速警告,持续了 2 秒,此时速度达到 152 节。
摘要:随着科技的不断飞跃和创新的不断推进,民用飞机的系统日益精密复杂,座舱内飞行员需要处理的信息量也随之增加,认知负担也随之加重,对飞行安全构成极大威胁。为此,设计人员基于人机工程学,制定了重要性、使用频率、功能分组、操作顺序等座舱布局原则,可以有效减轻飞行员的认知负担。某机型座舱布局对四大设计原则的符合程度可以体现其人机工程学设计水平。本文依据上述四大座舱布局原则的概念,提出了座舱布局对四大设计原则符合性的评价方法。该方法以实际机型在正常飞行任务中使用的座舱系统控件操作顺序为评价数据源,采用加权累积法得到座舱布局总体评价结果。最后以A320系列和B737NG系列民航客机驾驶舱为例,阐述了民航客机驾驶舱布局的评估流程,并根据最终评估结果验证了所提评估方法的可行性和有效性。
步骤 1。请参阅适用的服务手册说明;拆除并保留发动机罩。断开船舶电池,首先断开负极 (-) 端子。步骤 2。请参阅适用的服务手册说明;拆除现有调节器。步骤 3。选择合适的位置安装 LR3C。最好安装在防火墙的飞行员侧或机舱内靠近面板的位置(线性控制器在电气上“安静”,正确安装时不会产生噪音)。步骤 4。选择合适的位置在仪表板上安装白炽低压警告灯(随附)。灯应位于飞行员的周边视野范围内 - 通常位于飞行员前方 45 度角。最好将面板安装在远离阳光直射的位置。步骤 5。选择合适的面板位置来安装 2A 和 5A 断路器。建议将面板安装在飞行员的视野和触及范围内。步骤 6。选择合适的面板位置来安装交流发电机励磁开关。如果可行,建议将面板安装在紧邻船舶电池主控器的附近。调节器安装
行李限额/限制 所有乘客均可托运 2 件行李(每件 70 磅/共 140 磅)。每件行李尺寸限制为 62 英寸(长+宽+高)。每位乘客可携带一件超大物品,如滑雪板、高尔夫球杆、自行车等;*有一些例外情况,长度超过 80 英寸和重量超过 100 磅的物品将不能作为行李运输,必须放在家居用品中运输。 订票旅行的乘客可以托运超重行李。目前的资费为每个超重/超重行李 125 美元。 *由于飞机限制,旅行时可能限制接受超重行李。每位乘客可以随身携带一件物品(小行李箱、服装袋、背包、医疗设备等)和一件个人物品(化妆包、钱包、公文包、小盒子、包裹等)存放在客舱区域。这些物品的重量不计入乘客的行李授权。随身携带物品的长宽不得超过 45 英寸,且必须能放在乘客座位下方或头顶行李舱内。AMC 遵循美国国土安全部 TSA 指南。**有关随身携带/托运违禁物品的指南,请参阅:https://www.faa.gov/hazmat/packsafe
去年 9 月,一项重要的国际协议就一项名为“太空实验室”的新合作计划达成。在华盛顿,欧洲空间研究组织(ESRO)总干事与美国国家航空航天局局长签署了一份谅解备忘录,根据备忘录,ESRO 将组织和指导九个欧洲国家设计和开发可重复使用的太空实验室“太空实验室”。这个新系统将安装在航天飞机的有效载荷舱内,在整个任务期间将与轨道器保持连接并依赖轨道器。根据美国国家航空航天局对 20 世纪 80 年代航天飞机用途的最新估计,超过三分之一的飞行将携带太空实验室配置,用于科学、应用和技术调查,除了任务持续时间较短外,在许多方面与天空实验室的飞行类似。根据 20 世纪 80 年代后期的航天飞机交通估计,每年将有 30 多次太空实验室飞行,每次飞行持续 7 至 30 天。本文的第一部分将描述太空实验室概念的现状,第二部分将讨论该计划的主要特征,包括欧洲的作用。
国防部的新人工智能 (AI) 战略是一个创意宝库。1 该战略于 2019 年 2 月的新闻发布会上公布,(可以毫不夸张地说)这是一份雄心勃勃的文件,其影响深远。与硬编码的“垃圾进,垃圾出”程序不同,算法编写者将编写能够自行学习的代码,这些程序会输出特定的输出。仿照生物系统建模的神经网络有朝一日可能会在人类思维的灰色地带漫游。随着时间的推移和大量的训练,人工智能将区分坦克和卡车,米格战机和普通飞机。自动驾驶汽车将把部队运送到前线,有朝一日,无人驾驶飞机可能会运送货物和为战斗机加油。发展中的空军人工智能已经能够让半自主的“忠诚”僚机在飞行员的指导下,在相对安全的驾驶舱内执行预先编程的任务。 2 之后,装有人工智能的故障部件会在需要更换时发出警报,使维修计划更加高效,成本更低。军医可能会在人工智能辅助超声检测出疾病后建议进行早期活检,从而改善预后,让所有美国人都能活得更长寿、更充实。
莱格赛 500 是首款采用线控飞行控制系统的中型喷气式飞机,它改变了业界格局,在性能、乘客空间和舒适度方面树立了未来的标杆。在驾驶舱内,先进的罗克韦尔柯林斯 Pro Line Fusion™ 平台使飞行员能够在具有出色人机工程学的驾驶舱环境中完全掌控一切。莱格赛 500 最多可容纳 12 名乘客,拥有同类飞机中最大的直立式客舱,可提供平稳的飞行。客舱地板平坦,厨房设备齐全,配有最先进的机上娱乐系统和雅致的座椅,在低客舱高度时可转换为完全平坦的卧铺。主行李舱是同类飞机中最大的,与宽敞的机上可携带行李的客舱储物空间相得益彰。采用全新设计的莱格赛 500 也是同类飞机中速度最快的飞机,可实现 0.82 马赫的高速巡航和卓越的跑道性能。