○ 经济舱采用 5 排座位排列,经济舱座椅宽度为 18+英寸(47 厘米),为同级别中最宽;中间座椅更宽,为 19 英寸(48.3 厘米) ○ 商务舱采用 4 排座位排列,座椅宽度为 21 英寸(53.3 厘米) ● 宽过道(约 20 英寸 - 50.8 厘米),可加快周转速度 ● 垂直侧壁可提供更多的个人空间和舒适度(特别是在肩部高度) ● 同级别中最大的头顶储物空间 ● 大型全景窗户(11 英寸 x 16 英寸),可为客舱提供更多自然光 ● 全彩 LED 氛围灯,具有可定制场景,有助于减轻目的地的疲劳 ● 更方便行动不便乘客使用的盥洗室(同级别中的一项特色) ● A220 客舱内的空气是从外部吸入的新鲜空气与经过高效过滤器(称为 HEPA 过滤器,可去除 99.9% 的空气颗粒)的空气混合A220 客舱空气每 2-3 分钟彻底更新一次
○ 经济舱采用 5 排座位排列,经济舱座椅宽度为 18+英寸(47 厘米),为同级别中最宽;中间座椅更宽,为 19 英寸(48.3 厘米) ○ 商务舱采用 4 排座位排列,座椅宽度为 21 英寸(53.3 厘米) ● 宽过道(约 20 英寸 - 50.8 厘米),可加快周转速度 ● 垂直侧壁可提供更多的个人空间和舒适度(特别是在肩部高度) ● 同级别中最大的头顶储物空间 ● 大型全景窗户(11 英寸 x 16 英寸),可为客舱提供更多自然光 ● 全彩 LED 氛围灯,具有可定制场景,有助于减轻目的地的疲劳 ● 更方便行动不便乘客使用的盥洗室(同级别中的一项特色) ● A220 客舱内的空气是从外部吸入的新鲜空气与经过高效过滤器(称为 HEPA 过滤器,可去除 99.9% 的空气颗粒)的空气混合A220 客舱空气每 2-3 分钟彻底更新一次
○ 经济舱采用 5 排座位排列,经济舱座椅宽度为 18+英寸(47 厘米),为同级别中最宽;中间座椅更宽,为 19 英寸(48.3 厘米) ○ 商务舱采用 4 排座位排列,座椅宽度为 21 英寸(53.3 厘米) ● 宽过道(约 20 英寸 - 50.8 厘米),可加快周转速度 ● 垂直侧壁提供更多个人空间和舒适度(特别是在肩部高度) ● 同级别中最大的头顶行李架:每位乘客一个拉杆箱 ● 大型全景窗户(11 英寸 x 16 英寸),可为客舱提供更多自然光 ● 全彩 LED 氛围灯,具有可定制场景,有助于减轻目的地的疲劳 ● 更方便行动不便乘客使用的盥洗室(同级别中的一项特色) ● A220 客舱内的空气是从外部吸入的新鲜空气与经过高效过滤器(称为 HEPA 过滤器,可去除 99.9% 的空气颗粒)的空气混合A220 客舱空气每 2-3 分钟彻底更新一次
○ 经济舱采用 5 排座位排列,经济舱座椅宽度为 18+英寸(47 厘米),为同级别中最宽;中间座椅更宽,为 19 英寸(48.3 厘米) ○ 商务舱采用 4 排座位排列,座椅宽度为 21 英寸(53.3 厘米) ● 宽过道(约 20 英寸 - 50.8 厘米),可加快周转速度 ● 垂直侧壁可提供更多的个人空间和舒适度(特别是在肩部高度) ● 同级别中最大的头顶储物空间 ● 大型全景窗户(11 英寸 x 16 英寸),可为客舱提供更多自然光 ● 全彩 LED 氛围灯,具有可定制场景,有助于减轻目的地的疲劳 ● 更方便行动不便乘客使用的盥洗室(同级别中的一项特色) ● A220 客舱内的空气是从外部吸入的新鲜空气与经过高效过滤器(称为 HEPA 过滤器,可去除 99.9% 的空气颗粒)的空气混合A220 客舱空气每 2-3 分钟彻底更新一次
1 2 3 4 MD-82 商用客机头等舱的精确高分辨率边界条件和流场 6 7 刘伟 1 , 温继洲 1 , 赵江月 1 , 尹伟友 1 , 沈晨 1 , 赖代一 1 , 林朝欣 8 2 , 刘俊杰 1 , 孙河江 1,* 陈庆艳 1,3 9 10 1 天津大学环境科学与工程学院,天津 300072,11 中国 12 2 波音民用飞机环境控制系统,华盛顿州埃弗里特 98203,美国 13 3 普渡大学机械工程学院,印第安纳州西拉斐特 47907,美国 14 15 * 电子邮件地址:sunhe@tju.edu.cn 16 17 摘要 18 19商用客机客舱对于创造热舒适和健康的客舱环境至关重要。除了客舱几何形状和家具外,流场还取决于扩散器处的热流体边界条件。为了研究客舱内的流场,本文介绍了一种获取客舱几何形状、扩散器边界条件和流场的程序。本研究使用激光跟踪系统和逆向工程生成了 MD-82 飞机客舱的数字模型。尽管该系统的测量误差很小,但仍然需要近似和假设以减少工作量和数据量。几何模型还可用于轻松计算空间体积。采用热球风速计 (HSA) 和超声波风速计 (UA) 组合来获取扩散器处的速度大小、速度方向和湍流强度。测量结果表明,实际客舱内的流动边界条件相当复杂,速度大小、速度方向和湍流强度在不同缝隙开口之间差异很大。还使用 UA 测量 20 Hz 下的三维空气速度,这也可用于确定湍流强度。由于流动的不稳定性,应至少测量 4 分钟才能获得准确的平均速度和湍流信息。结果发现,流场速度低、湍流强度高。这项研究为验证计算流体力学 (CFD) 模型提供了高质量数据,包括客舱几何形状、扩散器边界条件和 MD-82 商用客机头等舱的高分辨率流场。 关键词:客机客舱;客舱几何形状;流场;实验;扩散器 41 42 1. 引言 43 44 商用客机客舱中的空气分布用于维持乘客和机组人员的热舒适度 45 和空气质量。这些空气分布可以控制空气温度和 46 空气速度场,并可以稀释气体和颗粒浓度。尽管 47 航空航天工业在过去 48 十年中已经改善了飞机客舱的热舒适度和卫生状况(Space et al.,2000),空气分配系统需要进一步改进。49
1 2 3 4 MD-82 商用客机头等舱的精确高分辨率边界条件和流场 6 7 刘伟 1 , 温继洲 1 , 赵江月 1 , 尹伟友 1 , 沈晨 1 , 赖代一 1 , 林朝欣 8 2 , 刘俊杰 1 , 孙河江 1,* 陈庆艳 1,3 9 10 1 天津大学环境科学与工程学院,天津 300072,11 中国 12 2 波音民用飞机环境控制系统,华盛顿州埃弗里特 98203,美国 13 3 普渡大学机械工程学院,印第安纳州西拉斐特 47907,美国 14 15 * 电子邮件地址:sunhe@tju.edu.cn 16 17 摘要 18 19商用客机客舱对于创造热舒适和健康的客舱环境至关重要。除了客舱几何形状和家具外,流场还取决于扩散器处的热流体边界条件。为了研究客舱内的流场,本文介绍了一种获取客舱几何形状、扩散器边界条件和流场的程序。本研究使用激光跟踪系统和逆向工程生成了 MD-82 飞机客舱的数字模型。尽管该系统的测量误差很小,但仍然需要近似和假设以减少工作量和数据量。几何模型还可用于轻松计算空间体积。采用热球风速计 (HSA) 和超声波风速计 (UA) 组合来获取扩散器处的速度大小、速度方向和湍流强度。测量结果表明,实际客舱内的流动边界条件相当复杂,速度大小、速度方向和湍流强度在不同缝隙开口之间差异很大。还使用 UA 测量 20 Hz 下的三维空气速度,这也可用于确定湍流强度。由于流动的不稳定性,应至少测量 4 分钟才能获得准确的平均速度和湍流信息。结果发现,流场速度低、湍流强度高。这项研究为验证计算流体力学 (CFD) 模型提供了高质量数据,包括客舱几何形状、扩散器边界条件和 MD-82 商用客机头等舱的高分辨率流场。 关键词:客机客舱;客舱几何形状;流场;实验;扩散器 41 42 1. 引言 43 44 商用客机客舱中的空气分布用于维持乘客和机组人员的热舒适度 45 和空气质量。这些空气分布可以控制空气温度和 46 空气速度场,并可以稀释气体和颗粒浓度。尽管 47 航空航天工业在过去 48 十年中已经改善了飞机客舱的热舒适度和卫生状况(Space et al.,2000),空气分配系统需要进一步改进。49
1 2 3 4 MD-82 商用客机头等舱的精确高分辨率边界条件和流场 6 7 刘伟 1 , 温继洲 1 , 赵江月 1 , 尹伟友 1 , 沈晨 1 , 赖代一 1 , 林朝欣 8 2 , 刘俊杰 1 , 孙河江 1,* 陈庆艳 1,3 9 10 1 天津大学环境科学与工程学院,天津 300072,11 中国 12 2 波音民用飞机环境控制系统,华盛顿州埃弗里特 98203,美国 13 3 普渡大学机械工程学院,印第安纳州西拉斐特 47907,美国 14 15 * 电子邮件地址:sunhe@tju.edu.cn 16 17 摘要 18 19商用客机客舱对于创造热舒适和健康的客舱环境至关重要。除了客舱几何形状和家具外,流场还取决于扩散器处的热流体边界条件。为了研究客舱内的流场,本文介绍了一种获取客舱几何形状、扩散器边界条件和流场的程序。本研究使用激光跟踪系统和逆向工程生成了 MD-82 飞机客舱的数字模型。尽管该系统的测量误差很小,但仍然需要近似和假设以减少工作量和数据量。几何模型还可用于轻松计算空间体积。采用热球风速计 (HSA) 和超声波风速计 (UA) 组合来获取扩散器处的速度大小、速度方向和湍流强度。测量结果表明,实际客舱内的流动边界条件相当复杂,速度大小、速度方向和湍流强度在不同缝隙开口之间差异很大。还使用 UA 测量 20 Hz 下的三维空气速度,这也可用于确定湍流强度。由于流动的不稳定性,应至少测量 4 分钟才能获得准确的平均速度和湍流信息。结果发现,流场速度低、湍流强度高。这项研究为验证计算流体力学 (CFD) 模型提供了高质量数据,包括客舱几何形状、扩散器边界条件和 MD-82 商用客机头等舱的高分辨率流场。 关键词:客机客舱;客舱几何形状;流场;实验;扩散器 41 42 1. 引言 43 44 商用客机客舱中的空气分布用于维持乘客和机组人员的热舒适度 45 和空气质量。这些空气分布可以控制空气温度和 46 空气速度场,并可以稀释气体和颗粒浓度。尽管 47 航空航天工业在过去 48 十年中已经改善了飞机客舱的热舒适度和卫生状况(Space et al.,2000),空气分配系统需要进一步改进。49
(A):飞机。 AAIB(英国):航空事故调查处(英国),英国民航安全调查机构。 AAIU(爱尔兰):爱尔兰民航安全调查局航空事故调查组。 AD:适航指令。 AFM:飞机飞行手册。 ANSV:国家飞行安全局。 APU:辅助动力装置。 ATC:空中交通管制。 ATP:验收测试程序。 ATPL:航空公司运输飞行员执照。 BEA:Bureau d'Enquêtes et d'Analyses pour la Sécurité de l'Aviation Civil,法国民用航空安全调查机构。 BFU:Bundesstelle für Flugunfalluntersuchung,德国民航安全调查局。 CFDIU:集中故障显示接口单元。 CFDS:集中故障显示系统。检查清单:检查清单。驾驶舱:驾驶舱。 CT-SCAN:计算机断层扫描。 CVR:驾驶舱语音记录器,记录驾驶舱内的通讯、声音和噪音。 DFDR:Digital Flight Data Recorder,数字飞行数据记录仪。 EASA:欧洲航空安全局,欧洲航空安全局。 ECAM:电子集中飞机监视器。 FC:飞行周期。 FDR:Flight Data Recorder,模拟飞行数据记录器。 FT :英尺,测量单位,1
1 2 3 4 MD-82 商用客机头等舱的精确高分辨率边界条件和流场 6 7 刘伟 1 , 温继洲 1 , 赵江月 1 , 尹伟友 1 , 沈晨 1 , 赖代一 1 , 林朝欣 8 2 , 刘俊杰 1 , 孙河江 1,* 陈庆艳 1,3 9 10 1 天津大学环境科学与工程学院,天津 300072,11 中国 12 2 波音民用飞机环境控制系统,华盛顿州埃弗里特 98203,美国 13 3 普渡大学机械工程学院,印第安纳州西拉斐特 47907,美国 14 15 * 电子邮件地址:sunhe@tju.edu.cn 16 17 摘要 18 19商用客机客舱对于创造热舒适和健康的客舱环境至关重要。除了客舱几何形状和家具外,流场还取决于扩散器处的热流体边界条件。为了研究客舱内的流场,本文介绍了一种获取客舱几何形状、扩散器边界条件和流场的程序。本研究使用激光跟踪系统和逆向工程生成了 MD-82 飞机客舱的数字模型。尽管该系统的测量误差很小,但仍然需要近似和假设以减少工作量和数据量。几何模型还可用于轻松计算空间体积。采用热球风速计 (HSA) 和超声波风速计 (UA) 组合来获取扩散器处的速度大小、速度方向和湍流强度。测量结果表明,实际客舱内的流动边界条件相当复杂,速度大小、速度方向和湍流强度在不同缝隙开口之间差异很大。还使用 UA 测量 20 Hz 下的三维空气速度,这也可用于确定湍流强度。由于流动的不稳定性,应至少测量 4 分钟才能获得准确的平均速度和湍流信息。结果发现,流场速度低、湍流强度高。这项研究为验证计算流体力学 (CFD) 模型提供了高质量数据,包括客舱几何形状、扩散器边界条件和 MD-82 商用客机头等舱的高分辨率流场。 关键词:客机客舱;客舱几何形状;流场;实验;扩散器 41 42 1. 引言 43 44 商用客机客舱中的空气分布用于维持乘客和机组人员的热舒适度 45 和空气质量。这些空气分布可以控制空气温度和 46 空气速度场,并可以稀释气体和颗粒浓度。尽管 47 航空航天工业在过去 48 十年中已经改善了飞机客舱的热舒适度和卫生状况(Space et al.,2000),空气分配系统需要进一步改进。49
随着航空航天事业的快速发展,飞机的热舒适性受到越来越多的关注。然而客舱内环境与地面建筑环境有很大不同[4-6]。客舱环境的典型特征是低压、低湿度、缺乏新鲜空气和密封性要求高。每个乘客平均只有1至2 m3的空间[7],远远小于一般的办公环境。商用客机的巡航高度通常在5490 m至12500 m之间[8]。在这个高度,特别是在较高的海拔地区,大气的含水量很低。客舱中的水分主要来自乘客的汗液蒸发,因此客舱内的相对湿度通常低于20%[9]。这种低相对湿度会引起眼干、呼吸道阻塞等不适症状[10,11]。近期大量研究表明客舱个性化送风系统能有效改善旅客周围空气质量,有效降低旅客呼吸区污染物[12-15]。目前,对地面建筑室内环境热舒适的相关研究和文献综述较多[16-18],但对飞机客舱环境热舒适的研究较少。因此,本文试图对人体热舒适研究领域的工作进行总结,旨在为航空旅客提供更便捷、更高效的乘机服务。